MATH 270
 SUMMER 2004
 HOMEWORK 5

Due Wednesday July 7, 2004.

1. Suppose that p is a prime number and $n, m \in \mathbb{N}$.
a) (5 pt) Show that if $a, b \in \mathbb{N}$ and $p \mid a b$ then $p \mid a$ or $p \mid b$.
b) (5 pt) Show that if $1 \leq m \leq p-1$ then $p \left\lvert\,\binom{ p}{m}\right.$. Is this result true if the assumption that p is a prime is omitted?
c) (5 pt) Show that $n^{p}-n$ is always divisible by p.
2. Suppose that there are 10 finalists in a small lottery.
a) (3 pt) If there are three $\$ 100$ prizes, two $\$ 200$ prizes, and a $\$ 300$ prize to be given out, how many ways are there to distribute the money?
b) (3 pt) If there are five prizes of $\$ 200$ to be given, how many ways are there to distribute the money?
3. Let S be a nonempty partially ordered set and $T \subseteq S$ a subset.
a) (5 pt) Show that T is also a partially ordered set.
b) (5 pt) Show that if S is totally ordered then so is T.
c) (5 pt) Is the converse to part b) true?
d) (5 pt) Show that if S is finite and $x \in S$, then x is contained in a maximal totally ordered subset of S (by maximal totally ordered subset, I mean a subset $T \subseteq S$ that is totally ordered such that there is no other totally ordered subset of S properly containing T).
4. (3 pt) Let A and B be finite sets. How many relations are there from A to B ? Which would be worse, me asking you to list the relations from $\{1,2,3,4,5,6,7\}$ to $\{a, b, c, d, e\}$, or me asking you to list the relations on $\{u, v, w, x, y, z\}$?
