MATH 270
 SPRING 2003
 HOMEWORK 6

Due Friday March 7, 2003.

1. (3 pt) We say that $p \in \mathbb{N}$ is prime if the only divisors of p (in \mathbb{N}) are itself and 1 . Suppose that $p \in \mathbb{N}$ is prime and $n \in \mathbb{N}$ is a natural number. Show that if $m \in \mathbb{N}$ is a natural number such that $\operatorname{gcd}(m, p)=1$ and m divides $p n$ then m divides n. (Hint: perhaps an earlier homework will be useful).
2. (5 pt) Use the previous problem to show that if p is a prime and $a, b \in \mathbb{N}$ are such that p divides $a b$, then p must divide either a or b.
3. (3 pt) Use the previous result to show that if p is a prime and n is a natural number such that $1 \leq n \leq p-1$ then p divides the binomial coefficient $\binom{p}{n}$.
4. (3 pt) Use the previous results to show that if p is prime and $n \in \mathbb{N}$, then $n^{p}-n$ is a multiple of p.
5. (10 pt) Let A be a set of n elements $(n \geq 1)$. Find the number of distinct equivalence relations that can be imposed on A for $n=5,6$.
