MATH 270
 SUMMER 2007
 HOMEWORK 6

Due Monday July 9, 2007.

1. Define the relation \sim on \mathbb{R} by $x \sim y$ if and only if $x-y \in \mathbb{Z}$.
a) (5 pt) Show that \sim defines an equivalence relation on \mathbb{R}.
b) (5 pt) Describe the equivalence classes of \mathbb{R} / \sim.
2. Consider the collection of (real) vectors in the plane (that is, consider the vector space \mathbb{R}^{2}).
a) (3 pt) We first declare that $\vec{v} \sim \vec{w}$ if and only if $\|\vec{v}\|=\|\vec{w}\|$. Is \sim an equivalence relation on \mathbb{R}^{2} ? If so, describe the equivalence classes.
b) (3 pt) Now we declare that $\vec{v} \approx \vec{w}$ if and only if $\vec{v}=\lambda \vec{w}$ for some nonzero $\lambda \in \mathbb{R}$. Is this an equivalence relation on \mathbb{R}^{2} ? If so, describe the equivalence classes.
c) (3 pt) Carefully describe how your answer would change to part b) if we allowed λ to be any real number.
3. (5 pt) Let $n \in \mathbb{N} \bigcup\{0\}$. We define the equivalence relation \sim_{n} on \mathbb{Z} by declaring that $a \sim_{n} b$ if and only if $a-b$ is a multiple of n. Show that this is an equivalence relation and that the number of equivalence classes of \mathbb{Z} / \sim_{n} is given by

$$
\left|\mathbb{Z} / \sim_{n}\right|= \begin{cases}n, & \text { if } n \geq 1 \\ \infty, & \text { if } n=0\end{cases}
$$

4. (3 pt) Let S be a nonempty set. Show that there is a unique partial ordering on S that is also an equivalence relation. Carefully describe this partial ordering/equivalence relation.
5. (5 pt) In your book, a well-ordered set is defined to be a totally ordered set with the property that every subset has a least element. Show that this definition is slightly redundant by showing that any partially ordered set with the property that every subset has a least element is automatically totally ordered.
6. (3 pt) The real numbers \mathbb{R} is a totally ordered set under the standard notion of \leq. Prove that (\mathbb{R}, \leq) is not well-ordered.
