MATH 270 SUMMER 2007 HOMEWORK 6

Due Monday July 9, 2007.

- 1. Define the relation \sim on \mathbb{R} by $x \sim y$ if and only if $x y \in \mathbb{Z}$.
 - a) (5 pt) Show that \sim defines an equivalence relation on \mathbb{R} .
 - b) (5 pt) Describe the equivalence classes of \mathbb{R}/\sim .

2. Consider the collection of (real) vectors in the plane (that is, consider the vector space \mathbb{R}^2).

- a) (3 pt) We first declare that $\vec{v} \sim \vec{w}$ if and only if $\|\vec{v}\| = \|\vec{w}\|$. Is ~ an equivalence relation on \mathbb{R}^2 ? If so, describe the equivalence classes.
- b) (3 pt) Now we declare that $\vec{v} \approx \vec{w}$ if and only if $\vec{v} = \lambda \vec{w}$ for some nonzero $\lambda \in \mathbb{R}$. Is this an equivalence relation on \mathbb{R}^2 ? If so, describe the equivalence classes.
- c) (3 pt) Carefully describe how your answer would change to part b) if we allowed λ to be *any* real number.

3. (5 pt) Let $n \in \mathbb{N} \bigcup \{0\}$. We define the equivalence relation \sim_n on \mathbb{Z} by declaring that $a \sim_n b$ if and only if a - b is a multiple of n. Show that this is an equivalence relation and that the number of equivalence classes of \mathbb{Z}/\sim_n is given by

$$|\mathbb{Z}/\sim_n| = \begin{cases} n, & \text{if } n \ge 1;\\ \infty, & \text{if } n = 0. \end{cases}$$

4. (3 pt) Let S be a nonempty set. Show that there is a unique partial ordering on S that is also an equivalence relation. Carefully describe this partial ordering/equivalence relation.

5. (5 pt) In your book, a well-ordered set is defined to be a totally ordered set with the property that every subset has a least element. Show that this definition is slightly redundant by showing that any partially ordered set with the property that every subset has a least element is automatically totally ordered.

6. (3 pt) The real numbers \mathbb{R} is a totally ordered set under the standard notion of \leq . Prove that (\mathbb{R}, \leq) is not well-ordered.