1. Let \(f : A \rightarrow B \) and \(g : B \rightarrow C \) be functions.
 a) (3 pt) Show that if \(g \circ f \) is onto, then \(g \) is onto.
 b) (3 pt) Show that if \(g \circ f \) is one to one, then \(f \) is one to one.
 c) (3 pt) Give an example where \(g \circ f \) is onto, but \(f \) is not onto.
 d) (3 pt) Give an example where \(g \circ f \) is one to one, but \(g \) is not one to one.
 e) (3 pt) Show that if \(f \) and \(g \) are both one to one, then so is \(g \circ f \).
 f) (3 pt) Show that if \(f \) and \(g \) are both onto, then so is \(g \circ f \).

2. (5 pt) Show that if \(f : A \rightarrow B \) is both one to one and onto then there is a function
 \(g : B \rightarrow A \) such that \(f \circ g = I_B \) and \(g \circ f = I_A \).

3. In this problem, we count equivalence relations and partial orderings.
 a) (3 pt) How many distinct equivalence relations can be placed on a set of 5
 elements?
 b) (3 pt) How many linear orderings can be placed on a set with \(n \) elements?
 c) (3 pt) How many distinct partial orderings can be placed on a set with 5
 elements?

4. Let \(f : A \rightarrow B \) be a function and let \(\{S_k\}_{k \in I} \) be a collection of subsets of \(A \)
 (indexed by some set \(I \)).
 a) (5 pt) Show that if \(f \) is one to one, then \(f(\bigcap_{k \in I} S_k) = \bigcap_{k \in I} f(S_k) \).
 b) (5 pt) Given an example where \(f(\bigcap_{k \in I} S_k) \neq \bigcap_{k \in I} f(S_k) \).

5. Let \(A \) and \(B \) be finite sets, each with \(n \) elements, and let \(f : A \rightarrow B \) be a function.
 a) (5 pt) Show that \(f \) is one to one if and only if \(f \) is onto.
 b) (5 pt) Show that if \(A \) and \(B \) are infinite then neither implication from part a)
 necessarily holds.