# MATH 270 <br> SUMMER 2007 <br> HOMEWORK 7 

Due Friday July 13, 2007.

1. Let $f: A \longrightarrow B$ and $g: B \longrightarrow C$ be functions.
a) (3 pt) Show that if $g \circ f$ is onto, then $g$ is onto.
b) ( 3 pt ) Show that if $g \circ f$ is one to one, then $f$ is one to one.
c) ( 3 pt ) Give an example where $g \circ f$ is onto, but $f$ is not onto.
d) $(3 \mathrm{pt})$ Give an example where $g \circ f$ is one to one, but $g$ is not one to one.
e) (3 pt) Show that if $f$ and $g$ are both one to one, then so is $g \circ f$.
f) ( 3 pt ) Show that if $f$ and $g$ are both onto, then so is $g \circ f$.
2. ( 5 pt ) Show that if $f: A \longrightarrow B$ is both one to one and onto then there is a function $g: B \longrightarrow A$ such that $f \circ g=I_{B}$ and $g \circ f=I_{A}$.
3. In this problem, we count equivalence relations and partial orderings.
a) ( 3 pt ) How many distinct equivalence relations can be placed on a set of 5 elements?
b) ( 3 pt ) How many linear orderings can be placed on a set with $n$ elements?
c) ( 3 pt ) How many distinct partial orderings can be placed on a set with 5 elements?
4. Let $f: A \longrightarrow B$ be a function and let $\left\{S_{k}\right\}_{k \in I}$ be a collection of subsets of $A$ (indexed by some set $I$ ).
a) (5 pt) Show that if $f$ is one to one, then $f\left(\bigcap_{k \in I} S_{k}\right)=\bigcap_{k \in I} f\left(S_{k}\right)$.
b) (5 pt) Given an example where $f\left(\bigcap_{k \in I} S_{k}\right) \neq \bigcap_{k \in I} f\left(S_{k}\right)$.
5. Let $A$ and $B$ be finite sets, each with $n$ elements, and let $f: A \longrightarrow B$ be a function.
a) (5 pt) Show that $f$ is one to one if and only if $f$ is onto.
b) ( 5 pt ) Show that if $A$ and $B$ are infinite then neither implication from part a) necessarily holds.
