MATH 270
 SPRING 2003
 HOMEWORK 8

Due Friday April 11, 2003.

1. (All intervals in \mathbb{R} are of equal size.) Let (a, b) and (c, d) be open intervals (with $a \neq b$ and $c \neq d)$.
a) (5 pt) Show that $|(a, b)|=|(c, d)|$.
b) $(5 \mathrm{pt})$ Show that $|[a, b]|=|(a, b)|$.
c) (5 pt) Show that $|(a, b)|=|\mathbb{R}|$.
2. (5 pt) (Another concrete example of a "bigger infinity") Consider the interval $[0,1]$ and let $F_{[0,1]}$ be the set of all functions from $[0,1]$ to $[0,1]$. Show that $|[0,1]|<\left|F_{[0,1]}\right|$.
3. (3 pt) Let $T_{n}=\{0,1,2, \cdots, n-1\}(n>1)$ and let D_{n} be the set of infinite sequences $\left\{t_{k}\right\}_{k=1}^{\infty}$. Show that $\left|D_{n}\right|=|\mathbb{R}|$. Why did I demand $n>1$ in this problem?
4. (The Cantor middle thirds set.) Consider the interval $I=[0,1]$. We define a subset of I recursively. In the first step we consider the interval obtained by removing the middle third of $[0,1]$, (which is $\left(\frac{1}{3}, \frac{2}{3}\right)$), and we let $I_{1}=[0,1] \backslash\left(\frac{1}{3}, \frac{2}{3}\right)=\left[0, \frac{1}{3}\right] \bigcup\left[\frac{2}{3}, 1\right]$. In the next step we remove the middle third of each of the two pieces. That is, $I_{2}=I_{1} \backslash\left(\left(\frac{1}{9}, \frac{2}{9}\right) \bigcup\left(\frac{7}{9}, \frac{8}{9}\right)\right)$. In the step after this we again remove the middle third of the remaining pieces and we continue this process indefinitely. Let C be the subset of $[0,1]$ that is left over.
a) (3 pt) Show that the total "length" of what is removed is 1 (the same as the length of $[0,1]!$).
b) (3 pt) Show that $|C|=|[0,1]|$. (So despite the fact that you have removed intervals whose total length is 1 , you are left over with as many points as there are real numbers!)
