MATH 270

SUMMER 2004

HOMEWORK 8

Due Monday July 26, 2004.

1. Let G be a group. Prove the following.
a) (3 pt) If $x \in G$, then x^{-1} is unique.
b) (3 pt) If $x \in G$ then $\left(x^{-1}\right)^{-1}=x$.
c) $(3 \mathrm{pt})$ If $x, y \in G$ then $(x y)^{-1}=y^{-1} x^{-1}$.
2. Let G be a finite group with subgroup $H \subseteq G$ and $x \in G$ an element. We define the order of H (written $|H|$) to be the cardinality of the set H. Additionally, we define the order of x (written $|x|$) to be the smallest positive integer such that $x^{n}=e$ (and if no such positive integer exists, we say that $|x|=\infty$). Consider the set $\langle x\rangle=\left\{x^{n} \mid n \in \mathbb{Z}\right\}$.
a) (5 pt) Show that $\langle x\rangle$ is a subgroup of G.
b) (5 pt) Show that if $|x|$ is finite then $|x|=|\langle x\rangle|$.
c) (5 pt) Show that if $|x|=n<\infty$ and $x^{m}=e$ for some $m \in \mathbb{N}$ then n divides m.
d) (5 pt) Show that if $x^{m}=e$ and $x^{n}=e$ for some $n, m \in \mathbb{N}$ then $|x|$ divides $\operatorname{gcd}(n, m)$.
3. (5 pt) Show that if G is a group with the property that $x^{2}=e$ for all $x \in G$, then G is abelian.
4. (5 pt) Show that if G is a finite group and $x \in G$ then $|x|$ is finite.
5. (3 pt) Let G and H be groups. We define $G \times H=\{(g, h) \mid g \in G, h \in H\}$ with a binary operation given by

$$
\left(g_{1}, h_{1}\right)\left(g_{2}, h_{2}\right)=\left(g_{1} g_{2}, h_{1} h_{2}\right)
$$

Show that this operation makes the set $G \times H$ into a group (called the direct product of G and H).

