MATH 270
 SUMMER 2007
 HOMEWORK 8

Due Friday July 20, 2007.

1. Let $a<b$ and $c<d$ all be real numbers.
a) (3 pt) Show that $|(a, b)|=|(c, d)|$.
b) (3 pt) Show that $|(a, b)|=|\mathbb{R}|$.
2. Let $a<b$ and $c<d$ be real numbers and A, B, C, D be sets.
a) (5 pt) Show that if $|A|=|B|$ and $|C|=|D|$ then $|A \times C|=|B \times D|$.
b) (5 pt) Show that $|(a, b) \times(c, d)|=|(0,1)|$.
c) $(5 \mathrm{pt})$ Show that $|\mathbb{R} \times \mathbb{R}|=|\mathbb{R}|$.
3. Let A and B be nonempty sets.
a) (5 pt) Let $F_{A}=\{f \mid f: A \longrightarrow A\}$ be the set of functions from A to A. Show that $|A|<\left|F_{A}\right|$.
b) (5 pt) If A and B are finite sets, count the number of functions from A to B. How many are one to one and how many are onto?
See if you can show that there are

$$
\sum_{k=0}^{m-1}(-1)^{k}\binom{m}{k}(m-k)^{n}
$$

functions from a set of n elements onto a set of m elements with $m \leq n$. Note that this has the corollary that $\sum_{k=0}^{n-1}(-1)^{k}\binom{n}{k}(n-k)^{n}=n$!.
4. Consider the set, I, of all integrable functions on the interval $[-1,1]$. We say that two functions in I, f and g, are equivalent $(f \sim g)$ if $\int_{-1}^{1}(f(x)-g(x)) d x=0$.
a) (3 pt) Show that \sim defines an equivalence relation on I.
b) (3 pt) Find a representative for each equivalence class in I / \sim.
c) (3 pt) Show that $|I / \sim|=|\mathbb{R}|$.
5. (The Cantor middle thirds set.) Consider the interval $I=[0,1]$. We define a subset of I recursively. In the first step we consider the interval obtained by removing the middle third of $[0,1]$, (which is $\left(\frac{1}{3}, \frac{2}{3}\right)$), and we let $I_{1}=[0,1] \backslash\left(\frac{1}{3}, \frac{2}{3}\right)=\left[0, \frac{1}{3}\right] \bigcup\left[\frac{2}{3}, 1\right]$. In the next step we remove the middle third of each of the two pieces. That is, $I_{2}=I_{1} \backslash\left(\left(\frac{1}{9}, \frac{2}{9}\right) \bigcup\left(\frac{7}{9}, \frac{8}{9}\right)\right)$. In the step after this we again remove the middle third of the remaining pieces and we continue this process indefinitely. Let C be the subset of $[0,1]$ that is left over.
a) (3 pt) Show that the total "length" of what is removed is 1 (the same as the length of $[0,1]$!).
b) (3 pt) Show that $|C|=|[0,1]|$. (So despite the fact that you have removed intervals whose total length is 1 , you are left over with as many points as there are real numbers!)

