# MATH 270 <br> SPRING 2003 <br> HOMEWORK 9 

Due Wednesday April 23, 2003.

1. Let $G$ be a group. Prove the following.
a) $(3 \mathrm{pt})$ The identity element of $G$ is unique.
b) ( 3 pt ) If $x \in G$ then the inverse of $x$ is unique.
2. ( 5 pt ) Let $G$ be a group that has the property that every element of $G$ has order no more than 2 . Show that $G$ is necessarily an abelian group.
3. ( 3 pt ) Let $G$ be a finite group and let $x \in G$. Show that the order of $x$ is finite.
4. ( 6 pt ) Let $p$ be a positive prime integer. Give an example of a group of order $p^{2}$ which has an element of order $p^{2}$ and give an example of a group of order $p^{2}$ that has no element of order $p^{2}$.
5. (10 pt) Let $A$ be any nonempty set and let $S(A)=\{f: A \longrightarrow A \mid f$ is bijective $\}$. Show that $S(A)$ forms a group under function composition. If $|A|=n$ then we often write $S(A)=S_{n}$. Find the order of $S_{n}$.
6. ( $10 \mathrm{pt)}$ Let $G L_{2}(\mathbb{R})$ be the set of $2 \times 2$ matrices with real entries and nonzero determinant. Let $S L_{2}(\mathbb{R})$ be the set of $2 \times 2$ matrices with real entries and determinant 1. Show that $G L_{2}(\mathbb{R})$ is a group containing $S L_{2}(\mathbb{R})$ as a subgroup.
