MATH 270
 SPRING 2003
 EXAM 1
 IN CLASS PORTION

1. (15 pt) Prove that for every $n \in \mathbb{N}, n^{3}-n$ is divisible by 3 .
2. (15 pt) Suppose that you have a square and you wish to label each of the corners with the numbers $1,2,3,4$. We will say that two such labellings L_{1} and L_{2} are equivalent ($L_{1} \sim L_{2}$) if L_{2} is a looks like L_{1} after a rotation.
a) How many labellings are possible?
b) Show that \sim is an equivalence relation.
c) How many distinct equivalence classes are there (modulo \sim)?
3. (10 pt) Suppose that you have three sets A, B, C with 13,12 and 24 elements respectively. You also know that the number of elements in $A \bigcup B \bigcup C$ is 37 and that $|A \bigcap B|=3$, $|B \bigcap C|=4$, and $|A \bigcap C|=6$. Find the number of elements in $A \bigcap B \bigcap C$.
4. (10 pt) Perform the following operations:
a) Negate the statement: "Either Bill and Joe went to the movies or Cletus blew up a gopher".
b) Give the contrapositive to the statement: "A natural number is prime if it is only divisible by itself and 1 ".
