MATH 270 SPRING 2003 EXAM 2 IN CLASS PORTION

1. (5 pt) Give an example of a partially ordered set that is not totally ordered (and explain why your example works).

2. (7 pt) Let \mathbb{R} denote the set of real numbers, \wp the set of nonzero prime integers, E the set of even integers, \mathbb{Q} the rational numbers, D the set of integers that are not divisible by any prime, M the number of molecules in the galaxy, and \mathbb{N} the natural numbers. Arrange the sets \mathbb{R} , \wp , E, \mathbb{Q} , D, M, and \mathbb{N} in increasing order of size (use the notations < and = only).

3. (5 pt) Suppose that you have a function f from a set to itself $(f : A \longrightarrow A)$ and suppose that f is one to one. Is it necessarily onto? Prove or give a counterexample.

4. Consider the functions $f: A \longrightarrow B$ and $g: B \longrightarrow C$.

- a) (5 pt) Show that if $g \circ f$ is onto then g is onto.
- b) (5 pt) Show that if $g \circ f$ is one to one then f is one to one.

5. (5 pt) Let $f : A \longrightarrow B$ be a function. Show that f is one to one if and only if for all $b \in B$, $|f^{-1}(\{b\})| \le 1$.

6. (5 pt) Let $f : A \longrightarrow B$ be a one to one function. Show that there is an onto function $g : B \longrightarrow A$. (Note: it is also true that if $f : A \longrightarrow B$ is onto then there is a function $g : B \longrightarrow A$ that is one to one, but I had to use the Axiom of Choice...see if you can prove this for extra credit.)