MATH 270
 SPRING 2003
 EXAM 2
 IN CLASS PORTION

1. (5 pt) Give an example of a partially ordered set that is not totally ordered (and explain why your example works).
2. (7 pt$)$ Let \mathbb{R} denote the set of real numbers, \wp the set of nonzero prime integers, E the set of even integers, \mathbb{Q} the rational numbers, D the set of integers that are not divisible by any prime, M the number of molecules in the galaxy, and \mathbb{N} the natural numbers. Arrange the sets $\mathbb{R}, \wp, E, \mathbb{Q}, D, M$, and \mathbb{N} in increasing order of size (use the notations $<$ and $=$ only).
3. (5 pt) Suppose that you have a function f from a set to itself $(f: A \longrightarrow A)$ and suppose that f is one to one. Is it necessarily onto? Prove or give a counterexample.
4. Consider the functions $f: A \longrightarrow B$ and $g: B \longrightarrow C$.
a) (5 pt) Show that if $g \circ f$ is onto then g is onto.
b) (5 pt) Show that if $g \circ f$ is one to one then f is one to one.
5. (5 pt) Let $f: A \longrightarrow B$ be a function. Show that f is one to one if and only if for all $b \in B,\left|f^{-1}(\{b\})\right| \leq 1$.
6. (5 pt) Let $f: A \longrightarrow B$ be a one to one function. Show that there is an onto function $g: B \longrightarrow A$. (Note: it is also true that if $f: A \longrightarrow B$ is onto then there is a function $g: B \longrightarrow A$ that is one to one, but I had to use the Axiom of Choice...see if you can prove this for extra credit.)
