MATH 270
 SPRING 2003

 EXAM 2

 EXAM 2
 TAKE HOME PORTION

Due Wednesday April 2, 2003.
Instructions: You may use notes and your book, but I am the only biological resource that you should utilize. This portion of the exam will be weighted equally with the in class portion.

1. The real numbers \mathbb{R} is called an ordered field under the standard notion of \leq. By this we mean that \mathbb{R} is a totally ordered set, and additionally, the following two axioms are satisfied.
i) If $x, y, z \in \mathbb{R}$ and $x \leq y$ then $x+z \leq y+z$.
ii) If $x, y \in \mathbb{R}$ are such that $0<x$ and $0<y$ then $0<x y$.

Let $x, y, z \in \mathbb{R}$ and prove the following.
a) $(3 \mathrm{pt}) x>0 \Longleftrightarrow-x<0$.
b) (3 pt) If $x>0$ and $y<z$ then $x y<x z$.
c) (3 pt) If $x<0$ and $y<z$ then $x y>x z$.
d) (3 pt) $x^{2} \geq 0$ and equality holds if and only if $x=0$.
e) (3 pt) If $0<x<y$ then $0<\frac{1}{y}<\frac{1}{x}$.
2. (10 pt) Recall that the complex numbers are given by $\mathbb{C}=\{x+i y \mid x, y \in \mathbb{R}\}$. Show that the complex numbers is not an ordered field (that is, show that there is no total ordering on \mathbb{C} satifying the two extra axioms i) and ii) from problem 1).
3. Let $n, m \in \mathbb{N} \bigcup\{0\}$ be nonnegative integers. We will denote the set of equivalence classes modulo n (respectively m) be denoted by \mathbb{Z}_{n} (respectively \mathbb{Z}_{m}). We also note the canonical projection from \mathbb{Z} to \mathbb{Z}_{n} by π_{n} (where $\pi_{n}(k)=[k]_{n}$, the equivalence class of k modulo n).
a) $(3 \mathrm{pt})$ Find the preimage (under $\left.\pi_{n}\right)$ of the element $[k]_{n}$.
b) (3 pt) Show that π_{n} is onto.
c) (3 pt) Show that there is a function $f_{n, m}: \mathbb{Z}_{n} \longrightarrow \mathbb{Z}_{m}$ such that $f_{n, m} \circ \pi_{n}=\pi_{m}$ if and only if n is a multiple of m.
d) (3 pt) Show that the function from part c) (if it exists) is necessarily onto.
e) (3 pt) Show that $f_{n, m}$ is one to one if and only if $n=m$.
4. (10 pt) Give an example of a function from \mathbb{Z} to \mathbb{N} that is one to one and onto or explain why this cannot be done. Give an example of a function from \mathbb{N} to \mathbb{Q} that is one to one and an example of a function from the positive rational numbers to the natural numbers that is one to one or explain why this cannot be done.

