MATH 270 SPRING 2003 EXAM 2 TAKE HOME PORTION

Due Wednesday April 2, 2003.

Instructions: You may use notes and your book, but I am the only biological resource that you should utilize. This portion of the exam will be weighted equally with the in class portion.

1. The real numbers \mathbb{R} is called an *ordered field* under the standard notion of \leq . By this we mean that \mathbb{R} is a totally ordered set, and additionally, the following two axioms are satisfied.

- i) If $x, y, z \in \mathbb{R}$ and $x \leq y$ then $x + z \leq y + z$.
- ii) If $x, y \in \mathbb{R}$ are such that 0 < x and 0 < y then 0 < xy.

Let $x, y, z \in \mathbb{R}$ and prove the following.

- a) (3 pt) $x > 0 \iff -x < 0$.
- b) (3 pt) If x > 0 and y < z then xy < xz.
- c) (3 pt) If x < 0 and y < z then xy > xz.
- d) (3 pt) $x^2 \ge 0$ and equality holds if and only if x = 0.
- e) (3 pt) If 0 < x < y then $0 < \frac{1}{y} < \frac{1}{x}$.

2. (10 pt) Recall that the complex numbers are given by $\mathbb{C} = \{x+iy|x, y \in \mathbb{R}\}$. Show that the complex numbers is not an ordered field (that is, show that there is no total ordering on \mathbb{C} satisfying the two extra axioms i) and ii) from problem 1).

3. Let $n, m \in \mathbb{N} \bigcup \{0\}$ be nonnegative integers. We will denote the set of equivalence classes modulo n (respectively m) be denoted by \mathbb{Z}_n (respectively \mathbb{Z}_m). We also note the canonical projection from \mathbb{Z} to \mathbb{Z}_n by π_n (where $\pi_n(k) = [k]_n$, the equivalence class of k modulo n).

- a) (3 pt) Find the preimage (under π_n) of the element $[k]_n$.
- b) (3 pt) Show that π_n is onto.
- c) (3 pt) Show that there is a function $f_{n,m} : \mathbb{Z}_n \longrightarrow \mathbb{Z}_m$ such that $f_{n,m} \circ \pi_n = \pi_m$ if and only if n is a multiple of m.
- d) (3 pt) Show that the function from part c) (if it exists) is necessarily onto.
- e) (3 pt) Show that $f_{n,m}$ is one to one if and only if n = m.

4. (10 pt) Give an example of a function from \mathbb{Z} to \mathbb{N} that is one to one and onto or explain why this cannot be done. Give an example of a function from \mathbb{N} to \mathbb{Q} that is one to one and an example of a function from the positive rational numbers to the natural numbers that is one to one or explain why this cannot be done.