MATH 270 SUMMER 2004 EXAM 2 TAKE HOME PORTION

Due at the beginning of the in-class exam on Tuesday, July 20, 2004.

1. Let $a, b, c, d \in \mathbb{R}$ with $a \neq b$ and $c \neq d$ (the notation |(a, b)| refers to the cardinality of the interval (a, b)). Show the following.

- a) (5 pt) |(a, b)| = |(c, d)|.
- b) (5 pt) |(a,b)| = |[a,b]|.
- c) (5 pt) $|(a,b)| = |\mathbb{R}|$.
- 2. Let A be a finite set with $n \ge 1$ elements and B be a finite set with $m \ge 1$ elements.
 - a) (5 pt) How many functions are there from A to B?
 - b) (5 pt) How many one to one functions are there from A to B?
 - c) (5 pt) How many onto functions are there from A to B?

3. (5 pt) Let A be a (possibly infinite) set with $|A| \ge 2$ and let $B = \{f | f : A \longrightarrow A\}$ be the set of functions from A to A. Show that |A| < |B|.

4. Consider the set, I, of all integrable functions on the interval [-1, 1]. We say that two functions in I, f and g, are equivalent $(f \sim g)$ if $\int_{-1}^{1} (f(x) - g(x)) dx = 0$.

- a) (5 pt) Show that \sim defines an equivalence relation on I.
- b) (5 pt) Find a representative for each equivalence class in I/\sim .
- c) (5 pt) Show that $|I/ \sim | = |\mathbb{R}|$.

5. (5 pt) Let (S, \leq) be a finite partially ordered set. Show that (S, \leq) is well-ordered if and only if it is totally ordered. Is this statement also true for infinite sets (prove or give a counterexample)?