1. (10 pt) Let S be a finite set with $n \geq 2$ elements. Show that the number of subsets of order 2 of S is given by

$$
\frac{n(n-1)}{2}
$$

2. (5 pt) Give an example of functions:

$$
A \xrightarrow{g} A \xrightarrow{f} A
$$

with f not one to one and g not onto such that $f \circ g$ is a bijection.
3. (10 pt) Consider the set S of all rearrangements on the Rubik's cube (obtained by rotations). We define a relation \sim on S be declaring that two arrangements are similar ($R_{1} \sim R_{2}$) if when looking at only the corners of the cube (with the white side forward) the two arrangements are indistinguishable. Show that \sim defines an equivalence relation on S.
4. Let G be a group and $x, y \in G$ two elements such that $x y=y x$. Also assume that the order of x is n and the order of y is m (both finite). (For this problem you may freely use the fact that $\operatorname{gcd}(n, m) \operatorname{lcm}(n, m)=n m$ for positive integers n, m.)
a) (3 pt) Let k be a positive integer. Show that the order of x^{k} is $\frac{n}{\operatorname{gcd}(k, n)}$.
b) (3 pt) Show that if $\operatorname{gcd}(n, m)=1$ and $x^{k}=y^{j}$ then $x^{k}=y^{j}=e\left(\right.$ hint: if $x^{k}=y^{j}$ then the group generated by x^{k} is contained in the group generated by y).
c) (3 pt) Show that the order of $x y$ divides $\operatorname{lcm}(n, m)$.
d) (3 pt) Use part b) to show that if $\operatorname{gcd}(n, m)=1$ then the order of $x y$ is $n m$.
5. Let G be a group (with operation \circ). We define a new operation on the set G by $x \star y=y \circ x$.
a) (5 pt) Show that G with the operation \star forms a group.
b) (5 pt) Show that the map $f:(G, \circ) \longrightarrow(G, \star)$ given by $f(x)=x^{-1}$ is an isomorphism of groups.
6. Assume that the Rubik's cube is scrambled using $D^{\prime} R^{\prime}$.
a) $(3 \mathrm{pt})$ Compute the cycle decomposition for the corners.
b) (3 pt) Compute the cycle decomposition for the sides.
c) (3 pt) How many times must we do the move $D^{\prime} R^{\prime}$ before all the blocks come back into their correct positions?
d) (3 pt) Let m be the answer to c). It turns out that after doing the move $D^{\prime} R^{\prime} m$ times the sides are all oriented correctly, but the corners are not. How many times must we do the move $D^{\prime} R^{\prime}$ before the cube returns to its original state?
e) (3 pt) What would the answer to d) have been if some of the sides were not oriented correctly after doing $D^{\prime} R^{\prime} m$ times?

