MATH 270 SUMMER 2004 FINAL EXAM

1. Consider the statement "If G is an abelian group, then every subgroup of G is an abelian group."

- a) (5 pt) Carefully state the contrapositive of this statement.
- b) (5 pt) Carefully state the converse of this statement.
- c) (5 pt) Prove the statement or give a counterexample.

2. Let (X, d) be a metric space.

- a) (5 pt) If U_1, U_2, \dots, U_n are open sets then show that $\bigcap_{k=1}^n U_k$ is open.
- b) (5 pt) If C_1, C_2, \dots, C_m are closed sets then $\bigcup_{k=1}^m C_k$ is closed.
- c) (5 pt) Do either of the above extend to the infinite case?

3. Consider the sequence

$$\{a_n\} = \left\{\sqrt{3}, \sqrt{3+\sqrt{3}}, \sqrt{3+\sqrt{3}+\sqrt{3}}, \cdots\right\}.$$

Inductively prove the following.

- a) (5 pt) $\{a_n\}$ is bounded.
- b) (5 pt) $\{a_n\}$ is increasing.
- 4. Let $\{A_i\}_{i \in \Lambda}$ be a family of sets.

 - a) (5 pt) Show that $(\bigcup_{i \in \Lambda} A_i)^c = \bigcap_{i \in \Lambda} A_i^c$. b) (5 pt) Show that $(\bigcap_{i \in \Lambda} A_i)^c = \bigcup_{i \in \Lambda} A_i^c$ (you can use the previous result if you like).

5. Let \mathfrak{C} denote the set of functions $f: \mathbb{R} \longrightarrow \mathbb{R}$. For two functions $f, g \in \mathfrak{C}$ we will say that $f \sim g$ if and only if f - g is continuous.

- a) (5 pt) Show that \sim defines an equivalence relation on \mathfrak{C} (you may use the fact that sums and scalar multiples of continuous functions are continuous).
- b) (5 pt) Show that \mathfrak{C}/\sim is not countable (hint: give an uncountable family of functions that are pairwise not equivalent).