MATH 420-620

FALL 2012
HOMEWORK 1

Due Friday August 31, 2012.

1. Let $k, m, n \in \mathbb{Z}$ be nonzero integers.
a) (5 pt) Show that $\operatorname{gcd}(m, n)$ is a linear combination of m and n (that is, show that there are integers a and b such that $a m+b n=\operatorname{gcd}(m, n))$.
b) $(5 \mathrm{pt})$ Show that if $\operatorname{gcd}(k, m)=1$ and $\operatorname{gcd}(k, n)=1$, then $\operatorname{gcd}(k, m n)=1$.
c) $(5 \mathrm{pt})$ Show that if $\operatorname{gcd}(k, m)=1$ and k divides $m n$, then k divides n.
2. (5 pt) Let $m, n \in \mathbb{Z}$ be nonzero integers, $d=\operatorname{gcd}(m, n)$ and $L=\operatorname{lcm}(m, n)$. Show that $d L=m n$.
3. Let A be a nonempty set and \sim an equivalence relation on A.
a) (5 pt) Show that the set of equivalence classes of A under \sim is a partition of A.
b) (5 pt) Show that if $\left\{A_{i}\right\}_{i \in \Lambda}$ is a partition of A, then there is an equivalence relation on A such that the sets $\left\{A_{i}\right\}_{i \in \Lambda}$ are precisely the equivalence classes of A under this relation.
