\documentclass[12pt]{amsart} \usepackage{amssymb} \usepackage{amsmath} \usepackage{amsthm} \usepackage[all]{xy} \voffset=-1in \hoffset=-1in \textheight=10in \textwidth=6in \begin{document} \author{} \title{Math 420-620\\Fall 2012\\Homework 1} \date{} \maketitle \thispagestyle{empty} \pagestyle{empty} \centerline{\it Due Friday August 31, 2010.} \centerline{} \noindent 1. Let $k,m,n\in\mathbb{Z}$ be nonzero integers. \begin{itemize} \item[a)] (5 pt) Show that $\text{gcd}(m,n)$ is a linear combination of $m$ and $n$ (that is, show that there are integers $a$ and $b$ such that $am+bn=\text{gcd}(m,n)$). \item[b)] (5 pt) Show that if $\text{gcd}(k,m)=1$ and $\text{gcd}(k,n)=1$, then $\text{gcd}(k,mn)=1$. \item[c)] (5 pt) Show that if $\text{gcd}(k,m)=1$ and $k$ divides $mn$, then $k$ divides $n$. \end{itemize} \centerline{} \noindent 2. (5 pt) Let $m,n\in\mathbb{Z}$ be nonzero integers, $d=\text{gcd}(m,n)$ and $L=\text{lcm}(m,n)$. Show that $dL=mn$. \centerline{} \noindent 3. Let $A$ be a nonempty set and $\sim$ an equivalence relation on $A$. \begin{itemize} \item[a)] (5 pt) Show that the set of equivalence classes of $A$ under $\sim$ is a partition of $A$. \item[b)] (5 pt) Show that if $\{A_i\}_{i\in \Lambda}$ is a partition of $A$, then there is an equivalence relation on $A$ such that the sets $\{A_i\}_{i\in \Lambda}$ are precisely the equivalence classes of $A$ under this relation. \end{itemize} \end{document}