MATH 420-620
 FALL 2012
 HOMEWORK 14

Due Friday December 7, 2012.

1. Let $d \neq 1$ be a square-free integer and consider the set of elements $\mathbb{Q}[\sqrt{d}]=$ $\{a+b \sqrt{d} \mid a, b \in \mathbb{Q}\}$.
a) (5 pt) Show that $\mathbb{Q}[\sqrt{d}]$ is a field.
b) (5 pt) Show that $\mathbb{Q}[\sqrt{d}]=\mathbb{Z}[\sqrt{d}]_{S}$, where S is the multiplicative set of nonzero integers.
2. (5 pt) Consider the function $\phi: \mathbb{Q}[\sqrt{d}] \longrightarrow \mathbb{Q}[\sqrt{d}]$ given by $\phi(a+b \sqrt{d})=a-b \sqrt{d}$. Show that ϕ is an automorphism of fields.
3. Let $R:=\mathbb{Z}[\sqrt{d}]=\{m+n \sqrt{d} \mid m, n \in \mathbb{Z}\}$ and consider the function $N: \mathbb{Z}[\sqrt{d}] \longrightarrow \mathbb{Z}$ given by $N(m+n \sqrt{d})=m^{2}-d n^{2}$. Show that the function N enjoys the following properties.
a) (5 pt) $N(\alpha \beta)=N(\alpha) N(\beta)$, for all $\alpha, \beta \in R$.
b) $(5 \mathrm{pt}) N(\alpha)=0$ if and only if $\alpha=0$.
c) (5 pt) $N(\alpha)= \pm 1$ if and only if $\alpha \in U(R)$.
4. (5 pt) Show that the Gaussian integers $\mathbb{Z}[i]$ is Euclidean. What can you say about factorization in $\mathbb{Z}[i]$?
5. Consider the integral domain $\mathbb{Z}[\sqrt{-5}]$, and $\mathbb{Z}[\sqrt{-14}]$.
a) (5 pt) Show that the elements $2,3,1+\sqrt{-5}$, and $1-\sqrt{-5}$ are irreducible in $\mathbb{Z}[\sqrt{-5}]$
b) (5 pt) Show that $\mathbb{Z}[\sqrt{-5}]$ is not a UFD.
c) (5 pt) Find an element with two irreducible factorizations of different lengths in $\mathbb{Z}[\sqrt{-14}]$.
