MATH 420-620

FALL 2012
HOMEWORK 3

Due Monday September 17, 2012.

1. (5 pt) Consider the map $\phi: G \longrightarrow G$ given by $\phi(x)=x^{-1}$.
a) (5 pt) Show that ϕ is a homomorphism if and only if G is abelian.
b) (5 pt) Show that if ϕ is a homomorphism, then ϕ is an automorphism.
2. Consider the group, G, generated by the two matrices

$$
\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

a) $(5 \mathrm{pt})$ Find the order of G.
b) (5 pt) Is G isomorphic to the quaternion group Q_{8} ? Why or why not?
3. Let G be a group. We define $\operatorname{Aut}(G)=\{\phi: G \longrightarrow G \mid \phi$ is an automorphism. $\}$.
a) $(5 \mathrm{pt})$ Show that $\operatorname{Aut}(G)$ is a group.
b) (5 pt) Suppose we define $\phi_{g}: G \longrightarrow G$ by $\phi_{g}(x)=g x g^{-1}$. Show that $\phi_{g} \in$ $\operatorname{Aut}(G)$.
c) (5 pt) Consider the collection of all $\phi_{g}, g \in G$ (we call this collection $\operatorname{Inn}(G)$). Show that $\operatorname{Inn}(G)$ is a subgroup of $\operatorname{Aut}(G)$. Is it a normal subgroup of $\operatorname{Aut}(G)$?
d) (5 pt) Show that the correspondence $g \longrightarrow \phi_{g}$ is a homomorphism from G to $\operatorname{Aut}(G)$. What is its kernal?

