MATH 420-620 FALL 2012 HOMEWORK 3

Due Monday September 17, 2012.

- 1. (5 pt) Consider the map $\phi: G \longrightarrow G$ given by $\phi(x) = x^{-1}$.
 - a) (5 pt) Show that ϕ is a homomorphism if and only if G is abelian.
 - b) (5 pt) Show that if ϕ is a homomorphism, then ϕ is an automorphism.
- 2. Consider the group, G, generated by the two matrices

$$\left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$

- a) (5 pt) Find the order of G.
- b) (5 pt) Is G isomorphic to the quaternion group Q_8 ? Why or why not?
- 3. Let G be a group. We define $\operatorname{Aut}(G) = \{\phi : G \longrightarrow G | \phi \text{ is an automorphism.} \}$.
 - a) (5 pt) Show that Aut(G) is a group.
 - b) (5 pt) Suppose we define $\phi_g: G \longrightarrow G$ by $\phi_g(x) = gxg^{-1}$. Show that $\phi_g \in Aut(G)$.
 - c) (5 pt) Consider the collection of all ϕ_g , $g \in G$ (we call this collection Inn(G)). Show that Inn(G) is a subgroup of Aut(G). Is it a normal subgroup of Aut(G)?
 - d) (5 pt) Show that the correspondence $g \longrightarrow \phi_g$ is a homomorphism from G to $\operatorname{Aut}(G)$. What is its kernal?