\documentclass[12pt]{amsart} \usepackage{amssymb} \usepackage{amsmath} \usepackage{amsthm} \usepackage[all]{xy} \voffset=-1in \hoffset=-1in \textheight=10in \textwidth=6in \begin{document} \author{} \title{Math 420-620\\Fall 2012\\Homework 3} \date{} \maketitle \thispagestyle{empty} \pagestyle{empty} \centerline{\it Due Monday September 17, 2012.} \centerline{} \noindent 1. (5 pt) Consider the map $\phi:G\longrightarrow G$ given by $\phi(x)=x^{-1}$. \begin{itemize} \item[a)] (5 pt) Show that $\phi$ is a homomorphism if and only if $G$ is abelian. \item[b)] (5 pt) Show that if $\phi$ is a homomorphism, then $\phi$ is an automorphism. \end{itemize} \centerline{} \noindent 2. Consider the group, $G$, generated by the two matrices \[ \left( \begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right) , \left( \begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) \] \begin{itemize} \item[a)] (5 pt) Find the order of $G$. \item[b)] (5 pt) Is $G$ isomorphic to the quaternion group $\text{Q}_8$? Why or why not? \end{itemize} \centerline{} \noindent 3. Let $G$ be a group. We define $\text{Aut}(G)=\{\phi:G\longrightarrow G\vert\text{ $\phi$ is an automorphism.}\}$. \begin{itemize} \item[a)] (5 pt) Show that $\text{Aut}(G)$ is a group. \item[b)] (5 pt) Suppose we define $\phi_g:G\longrightarrow G$ by $\phi_g(x)=gxg^{-1}$. Show that $\phi_g\in\text{Aut}(G)$. \item[c)] (5 pt) Consider the collection of all $\phi_g, \ g\in G$ (we call this collection $\text{Inn}(G)$). Show that $\text{Inn}(G)$ is a subgroup of $\text{Aut}(G)$. Is it a normal subgroup of $\text{Aut}(G)$? \item[d)] (5 pt) Show that the correspondence $g\longrightarrow\phi_g$ is a homomorphism from $G$ to $\text{Aut}(G)$. What is its kernal? \end{itemize} \end{document}