\documentclass[12pt]{amsart} \usepackage{amssymb} \usepackage{amsmath} \usepackage{amsthm} \usepackage[all]{xy} \voffset=-1in \hoffset=-1in \textheight=10in \textwidth=6in \begin{document} \author{} \title{Math 420-620\\Fall 2012\\Homework 4} \date{} \maketitle \thispagestyle{empty} \pagestyle{empty} \centerline{\it Due Monday September 24, 2012.} \centerline{} \noindent 1. Let $G$ be a group and $x,y\in G$. We say that the {\it commutator} of $x$ and $y$ (sometimes denoted $[x,y]$) is $[x,y]=x^{-1}y^{-1}xy$. Globally, we define the {\it commutator subgroup} of $G$ to be \[ G^\prime=\langle [x,y]\vert x,y\in G\rangle. \] \begin{itemize} \item[a)] (5 pt) Show that the elements $x,y\in G$ commute if and only if $[x,y]=1$. \item[b)] (5 pt) Show that $G^\prime$ is a normal subgroup of $G$. \item[c)] (5 pt) Show that if $N$ is a normal subroup of $G$, then $G/N$ is abelian if and only if $N$ contains $G^\prime$. \end{itemize} \centerline{} \noindent 2. (5 pt) Let $G$ be a group and $\phi:G\longrightarrow H$ be a homomorphism. Show that $\text{Z}(G)$ and $\text{ker}(\phi)$ are normal subgroups of $G$. \centerline{} \noindent 3. (5 pt) Let $G$ be a group and $H$ a subgroup of $G$ such that $[G:H]=2$. Show that $H\unlhd G$. Is the same true if $[G:H]=3$? \centerline{} \noindent 4. (5 pt) Let $G$ be a group with center $\text{Z}(G)$. Show that $G$ is abelian if and only if $G/\text{Z}(G)$ is cyclic. \end{document}