MATH 420-620

FALL 2012
HOMEWORK 5

Due Monday October 1, 2012.

1. Consider the additive group of the rationals \mathbb{Q}.
a) (5 pt) Show that any finitely generated subgroup of \mathbb{Q} is cyclic.
b) (5 pt) Show that \mathbb{Q} is not finitely generated.
2. (5 pt) Let H and K normal subgroups of G such that $H \bigcap K=1$. Show that $h k=k h$ for all $h \in H$ and $k \in K$.
3. (5 pt) Classify all groups of order $2 p$ where p is an odd prime.
4. (5 pt) Show that if G is a finite abelian group of order greater than 2, then $\operatorname{Aut}(G)$ is a finite group of even order.
5. Suppose that G is a finite group and $N \unlhd G$.
a) (5 pt) Show that if H is a subgroup of G such that $\operatorname{gcd}(|H|,[G: N])=1$ then H is a subgroup of N.
b) $(5 \mathrm{pt})$ Show that if $\operatorname{gcd}(|N|,[G: N])=1$ then N is the unique subgroup of G of order $|N|$.
