\documentclass[12pt]{amsart} \usepackage{amssymb} \usepackage{amsmath} \usepackage{amsthm} \usepackage[all]{xy} \voffset=-1in \hoffset=-1in \textheight=10in \textwidth=6in \begin{document} \author{} \title{Math 420-620\\Fall 2012\\Homework 5} \date{} \maketitle \thispagestyle{empty} \pagestyle{empty} \centerline{\it Due Monday October 1, 2012.} \centerline{} \noindent 1. Consider the additive group of the rationals $\mathbb{Q}$. \begin{itemize} \item[a)] (5 pt) Show that any finitely generated subgroup of $\mathbb{Q}$ is cyclic. \item[b)] (5 pt) Show that $\mathbb{Q}$ is not finitely generated. \end{itemize} \centerline{} \noindent 2. (5 pt) Let $H$ and $K$ normal subgroups of $G$ such that $H\bigcap K=1$. Show that $hk=kh$ for all $h\in H$ and $k\in K$. \centerline{} \noindent 3. (5 pt) Classify all groups of order $2p$ where $p$ is an odd prime. \centerline{} \noindent 4. (5 pt) Show that if $G$ is a finite abelian group of order greater than $2$, then $\text{Aut}(G)$ is a finite group of even order. \centerline{} \noindent 5. Suppose that $G$ is a finite group and $N\unlhd G$. \begin{itemize} \item[a)] (5 pt) Show that if $H$ is a subgroup of $G$ such that $\text{gcd}(\vert H\vert,[G:N])=1$ then $H$ is a subgroup of $N$. \item[b)] (5 pt) Show that if $\text{gcd}(\vert N\vert,[G:N])=1$ then $N$ is the unique subgroup of $G$ of order $\vert N\vert$. \end{itemize} \end{document}