MATH 420-620
 FALL 2012
 HOMEWORK 8

Due Wednesday October 24, 2012.

1. (5 pt) Let G be a finite p-group of order p^{n}. Show that for all $0 \leq k \leq n$, there is a subgroup of G of order p^{k} and each subgroup of order p^{k} is normal in a subgroup of order $p^{k+1}(k \leq n-1)$.
2. (5 pt) Let p and q be distinct primes with $p<q$ and $q \not \equiv 1 \bmod (p)$. Show that if $|G|=p q$ then $G \cong \mathbb{Z} / p q \mathbb{Z}$.
3. (5 pt) Let G be a group. We say that G is simple if G contains no normal subgroups except for G itself and the identity. Show that there is no simple group of order 80 .
4. Suppose that G is a group of order 72 ; the goal of this problem is to show that G cannot be simple.
a) (5 pt) Show that G has either 1 or 4 Sylow 3 -subgroups. Conclude that is G is simple, then G must have 4 Sylow 3 -subgroups.
b) (5 pt) Show that if G has 4 Sylow 3 -subgroups, then the conjugation action of G on the set of Sylow 3-subgroups induces a homomorphism from $G \longrightarrow \mathrm{~S}_{4}$.
c) (5 pt) Conclude that G must have a nontrivial normal subgroup (hint: the kernal of a homomorphism is always normal).
