MATH 420-620

FALL 2012
FINAL EXAM

1. (5 pt) Classify all abelian groups of order $p^{2} q^{3}$ where p, q are distinct positive primes.
2. (5 pt) Show that there is no simple group of order 50 .
3. (5 pt) Let G be a group and G^{\prime} be its commutator subgroup. What can you say about the commutator subgroup of G / G^{\prime} ?
4. (5 pt) Let R be commutative with identity and $I \subseteq R$ an ideal such that

$$
I:=\bigcap_{i \in \Gamma} \mathfrak{P}_{i}
$$

where each \mathfrak{P}_{i} is a prime ideal. Show that I is a radical ideal.
5. (5 pt) Let $d<0$ be a square free integer. Find the group of units of the domain $\mathbb{Z}[\sqrt{d}]$.
6. (5 pt) Show that the group of units of $\mathbb{Z}[\sqrt{2}]$ is infinite.
7. (5 pt) Let R be a commutative ring with identity. We define the Jacobson radical of $R, J(R)$, to be the intersection of all of the maximal ideals of R. Show that $x \in J(R)$ if and only if $1+r x \in U(R)$ for all $r \in R$.
8. Give the definition for each of the following.
a) (3 pt) What is an integral domain?
b) (3 pt) If $H \subseteq G$ is a group, what is the normalizer of H is G ?
c) $(3 \mathrm{pt})$ What is a prime ideal?
d) (3 pt) What is a maximal ideal?
e) (3 pt) What is a multiplicatively closed subset of a ring?
f) (3 pt) What does it mean for a multiplicatively closed set to be saturated?

