\documentclass[12pt]{amsart} \usepackage{amssymb} \usepackage{amsmath} \usepackage{amsthm} \usepackage[all]{xy} \voffset=-1in \hoffset=-1in \textheight=10in \textwidth=6.5in \begin{document} \author{} \title{Math 421-621\\Spring 2013\\Homework 10} \date{} \maketitle \thispagestyle{empty} \pagestyle{empty} \centerline{\it Due Wednesday April 24, 2013.} \centerline{} \noindent 1. (5 pt) Let $K\subseteq F$ be an extension of fields with $F$ algebraic over $K$ and $D$ an integral domain with $K\subseteq D\subseteq F$. Show that $D$ is a field. \centerline{} \noindent 2. (5 pt) Let $K\subseteq F$ be fields. If $u\in F$ is algebraic over $K$ of odd degree, then $K(u)=K(u^2)$. \centerline{} \noindent 3. (5 pt) Using the notation of the previous problem, show that if $u$ is transcendental over $K$, then $K(u^2)$ is a proper subfield of $K(u)$ that is isomorphic to $K(u)$. \centerline{} \noindent 4. Let $K\subseteq F$ be fields. We define $\text{Aut}_K(F)$ to be the group of automorphisms of $F$ that fix $K$. (This is called the Galois group of $F$ over $K$.) Compute the following Galois groups. \begin{itemize} \item[a)] (5 pt) $\text{Aut}_{\mathbb{Q}}(\mathbb{Q}(\sqrt{d})$ where $d$ is a square free integer. \item[b)] (5 pt) $\text{Aut}_{\mathbb{Q}}(\mathbb{Q}(\sqrt[3]{2})$. \item[c)] (5 pt) $\text{Aut}_{\mathbb{Q}}(\mathbb{Q}(\sqrt{2},\sqrt{3})$. \item[d)] (5 pt) $\text{Aut}_{\mathbb{Q}}(\mathbb{R})$. \end{itemize} \end{document}