MATH 421-621

 SPRING 2013

 SPRING 2013
 HOMEWORK 11

Due Wednesday May 1, 2013.

1. (5 pt) Let F be a field and let \bar{F} be its algebraic closure. Show that \bar{F} is algebraically closed.
2. (5 pt) Show that any field has an algebraic closure.
3. Let F be a field and $f(x) \in F[x]$ be an irreducible polynomial and K the splitting field of $f(x)$ over F.
a) (5 pt) Show that α is a multiple root in K if and only if α is a root of $f^{\prime}(x)$.
b) (5 pt) If $\operatorname{char}(F)=0$ then show that $f(x)$ is a separable polynomial.
c) (5 pt) Show that if F is a finite field, then $f(x)$ is separable.
d) $(5 \mathrm{pt})$ Show that for all n, the polynomial $x^{p^{n}}-x$ is separable over \mathbb{Z}_{p}.
e) (5 pt) Show that the set of roots of $x^{p^{n}}-x$ forms a field extension of \mathbb{Z}_{p}.
f) (5 pt) Show that for all n there is a unique (up to isomorphism) field of p^{n} elements.
