\documentclass[12pt]{amsart} \usepackage{amssymb} \usepackage{amsmath} \usepackage{amsthm} \usepackage[all]{xy} \voffset=-1in \hoffset=-1in \textheight=10in \textwidth=6.5in \begin{document} \author{} \title{Math 421-621\\Spring 2013\\Homework 11} \date{} \maketitle \thispagestyle{empty} \pagestyle{empty} \centerline{\it Due Wednesday May 1, 2013.} \centerline{} \noindent 1. (5 pt) Let $F$ be a field and let $\overline{F}$ be its algebraic closure. Show that $\overline{F}$ is algebraically closed. \centerline{} \noindent 2. (5 pt) Show that any field has an algebraic closure. \centerline{} \noindent 3. Let $F$ be a field and $f(x)\in F[x]$ be an irreducible polynomial and $K$ the splitting field of $f(x)$ over $F$. \begin{itemize} \item[a)] (5 pt) Show that $\alpha$ is a multiple root in $K$ if and only if $\alpha$ is a root of $f^\prime(x)$. \item[b)] (5 pt) If $\text{char}(F)=0$ then show that $f(x)$ is a separable polynomial. \item[c)] (5 pt) Show that if $F$ is a finite field, then $f(x)$ is separable. \item[d)] (5 pt) Show that for all $n$, the polynomial $x^{p^n}-x$ is separable over $\mathbb{Z}_p$. \item[e)] (5 pt) Show that the set of roots of $x^{p^n}-x$ forms a field extension of $\mathbb{Z}_p$. \item[f)] (5 pt) Show that for all $n$ there is a unique (up to isomorphism) field of $p^n$ elements. \end{itemize} \end{document}