MATH 421-621
 FALL 2013 HOMEWORK 2

Due Wednesday, January 23, 2013.

1. (5 pt) We say that the R-module M is simple if its only submodules are M and 0 . Show that if M is simple and $\phi: M \longrightarrow N$ is an R-module homomorphism, then ϕ is either one-to-one or the 0 map.
2. Let R be a commutative ring with identity.
a) $(5 \mathrm{pt})$ Show that $\operatorname{Hom}_{R}(M, N)$ is an R-module.
b) (5 pt) Show that if $N=M$ then $\operatorname{Hom}_{R}(M, N)$ also has a ring structure (is this ring necessarily commutative?).
3. (5 pt) Show that there is an R-module isomorphism

$$
\operatorname{Hom}_{R}(R, M) \cong M
$$

4. Let $n>0$ be a natural number. Compute the following.
a) $(5 \mathrm{pt}) \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}, \mathbb{Z} / n \mathbb{Z})$.
b) $(5 \mathrm{pt}) \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} / n \mathbb{Z}, \mathbb{Z})$.
5. We say that the R-module M is cyclic if there is an $m \in M$ such that $M=R m$.
a) (5 pt) Show that if M is cyclic and $\phi: M \longrightarrow N$ is an R-module homomorphism, then ϕ is completely determined by $\phi(m)$.
b) (5 pt) Show that the homomorphic image of a cyclic module is cyclic.
c) (5 pt) Is it true that a submodule of a cyclic module is necessarily cyclic? Prove or give a counterexample.
