\documentclass[12pt]{amsart} \usepackage{graphicx} \usepackage{amssymb} \usepackage{amsmath} \voffset=-1in \hoffset=-1in \textheight=10in \textwidth=7in \begin{document} \author{} \title{Math 421-621\\Fall 2013\\Homework 2} \date{} \maketitle \thispagestyle{empty} \pagestyle{empty} \centerline{\it Due Wednesday, January 23, 2013.} \centerline{} \noindent 1. (5 pt) We say that the $R-$module $M$ is {\it simple} if its only submodules are $M$ and $0$. Show that if $M$ is simple and $\phi:M\longrightarrow N$ is an $R-$module homomorphism, then $\phi$ is either one-to-one or the $0$ map. \centerline{} \noindent 2. Let $R$ be a commutative ring with identity. \begin{itemize} \item[a)] (5 pt) Show that $\text{Hom}_R(M,N)$ is an $R-$module. \item[b)] (5 pt) Show that if $N=M$ then $\text{Hom}_R(M,N)$ also has a ring structure (is this ring necessarily commutative?). \end{itemize} \centerline{} \noindent 3. (5 pt) Show that there is an $R-$module isomorphism \[ \text{Hom}_R(R,M)\cong M. \] \centerline{} \noindent 4. Let $n>0$ be a natural number. Compute the following. \begin{itemize} \item[a)] (5 pt) $\text{Hom}_{\mathbb{Z}}(\mathbb{Z},\mathbb{Z}/n\mathbb{Z})$. \item[b)] (5 pt) $\text{Hom}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z},\mathbb{Z})$. \end{itemize} \centerline{} \noindent 5. We say that the $R-$module $M$ is {\it cyclic} if there is an $m\in M$ such that $M=Rm$. \begin{itemize} \item[a)] (5 pt) Show that if $M$ is cyclic and $\phi:M\longrightarrow N$ is an $R-$module homomorphism, then $\phi$ is completely determined by $\phi(m)$. \item[b)] (5 pt) Show that the homomorphic image of a cyclic module is cyclic. \item[c)] (5 pt) Is it true that a submodule of a cyclic module is necessarily cyclic? Prove or give a counterexample. \end{itemize} \end{document}