MATH 421-621 **FALL 2013** HOMEWORK 3

Due Wednesday, January 30, 2013.

1. (5 pt) Let A be an R-module and $\phi: A \longrightarrow A$ be an R-module homomorphism satisfying $\phi^2(a) = \phi(a)$ for all $a \in A$. Show that

 $A \cong \ker(\phi) \oplus \operatorname{im}(\phi).$

- 2. Let M be an R-module with submodules A and B.
 - a) (5 pt) If $A \cong B$ show that $M/A \cong M/B$ or give a counterexample.
 - b) (5 pt) If there are R-module monomorphisms $\phi: A \longrightarrow B$ and $\psi: B \longrightarrow A$ show that $A \cong B$ or give a counterexample.
 - c) (5 pt) Under what conditions is $A \oplus B$ a submodule of M and when is $A \oplus B = M$?
- 3. Let M be an R-module and $I \subset R$ a proper ideal.
 - a) (5 pt) Show that $IM = \{\sum_{i=1}^{n} \alpha_i m_i | \alpha_i \in I, m_i \in M\}$ is an *R*-submodule of *M*. b) (5 pt) Show that M/IM is an R/I-module.

4. (5 pt) Show that a submodule of a free R-module need not be free. Give an example where Ris an integral domain and one where R is a finite ring.