MATH 421-621
 FALL 2013 HOMEWORK 3

Due Wednesday, January 30, 2013.

1. (5 pt) Let A be an R-module and $\phi: A \longrightarrow A$ be an R-module homomorphism satisfying $\phi^{2}(a)=\phi(a)$ for all $a \in A$. Show that

$$
A \cong \operatorname{ker}(\phi) \oplus \operatorname{im}(\phi)
$$

2. Let M be an R-module with submodules A and B.
a) (5 pt) If $A \cong B$ show that $M / A \cong M / B$ or give a counterexample.
b) (5 pt) If there are R-module monomorphisms $\phi: A \longrightarrow B$ and $\psi: B \longrightarrow A$ show that $A \cong B$ or give a counterexample.
c) (5 pt) Under what conditions is $A \oplus B$ a submodule of M and when is $A \oplus B=M$?
3. Let M be an R-module and $I \subset R$ a proper ideal.
a) (5 pt) Show that $I M=\left\{\sum_{i=1}^{n} \alpha_{i} m_{i} \mid \alpha_{i} \in I, m_{i} \in M\right\}$ is an R-submodule of M.
b) (5 pt) Show that $M / I M$ is an R / I-module.
4. (5 pt) Show that a submodule of a free R-module need not be free. Give an example where R is an integral domain and one where R is a finite ring.
