\documentclass[12pt]{amsart} \usepackage{graphicx} \usepackage[all]{xy} \usepackage{amssymb} \usepackage{amsmath} \voffset=-1in \hoffset=-1in \textheight=10in \textwidth=7in \begin{document} \author{} \title{Math 421-621\\Spring 2013\\Homework 4} \date{} \maketitle \thispagestyle{empty} \pagestyle{empty} \centerline{\it Due Wednesday, February 6, 2013.} \centerline{} \noindent 1. (5 pt) Let $F$ be a free $R-$module with basis $\{e_i\}_{i\in \Lambda}$, and $M$ another $R-$module. If $\{x_i\}_{i\in \Lambda}$ is a collection of elements of $M$, show that there is a unique homomorphism $\phi:F\longrightarrow M$ such that $\phi(e_i)=x_i$ for all $i\in\Lambda$. \centerline{} \noindent 2. We say that the $R-$module $P$ is {\it projective} if there is a free $R-$module $F$ and another $R-$module $K$ such that $P\oplus K\cong F$. \begin{itemize} \item[a)] (5 pt) Show that if $F$ is free then it is projective. \item[b)] (5 pt) Explain why the module $K$ is also projective. \item[c)] (5 pt) Show that $\mathbb{Q}$ is not a projective $\mathbb{Z}-$module, \item[d)] (5 pt) Give an example of a projective $R-$module that is not free. \end{itemize} \centerline{} \noindent 3. Consider the following diagram of $R-$modules (the homomorphism $g$ is surjective). \begin{center} $\xymatrix{ & P\ar@{-->}[dl]_h\ar[d]^f & \\ A\ar[r]_g &B\ar[r] & 0}$ \end{center} \begin{itemize} \item[a)] (5 pt) Show that if $P$ is free, then there is an $R-$module homomorphism $h:P\longrightarrow A$ such that $gh=f$. \item[b)] (5 pt) Show that if $P$ is projective, then there is an $R-$module homomorphism $h:P\longrightarrow A$ such that $gh=f$. \end{itemize} \centerline{} \noindent 4. (5 pt) Show that if $P$ and $Q$ are projective $R-$modules, then $P\otimes_R Q$ is also projective. \end{document}