\documentclass[12pt]{amsart} \usepackage{graphicx} \usepackage[all]{xy} \usepackage{amssymb} \usepackage{amsmath} \voffset=-1in \hoffset=-1in \textheight=10in \textwidth=7in \begin{document} \author{} \title{Math 421-621\\Fall 2013\\Homework 5} \date{} \maketitle \thispagestyle{empty} \pagestyle{empty} \centerline{\it Due Wednesday, February 13, 2013.} \centerline{} \noindent 1. Consider the following commutative diagram of $R-$module homomorphisms with exact rows. \begin{center} $\xymatrix{A_1\ar[r]^{f_1}\ar[d]^{g_1} & A_2\ar[r]^{f_2}\ar[d]^{g_2} & A_3\ar[r]^{f_3}\ar[d]^{g_3} & A_4\ar[r]^{f_4}\ar[d]^{g_4} & A_5\ar[d]^{g_5}\\ B_1\ar[r]^{h_1} & B_2\ar[r]^{h_2} & B_3\ar[r]^{h_3} & B_4\ar[r]^{h_4} & B_5}$ \end{center} Show the following. \begin{itemize} \item[a)] (5 pt) If $g_2$ and $g_4$ are onto and $g_5$ is one to one then $g_3$ is onto. \item[b)] (5 pt) If $g_2$ and $g_4$ are one to one and $g_1$ is onto then $g_3$ is one to one. \item[c)] (5 pt) Explain how the Short Five Lemma follows from the above results. \end{itemize} \centerline{} \noindent 2. (5 pt) Consider the following short exact sequence of $R-$modules. \begin{center} $\xymatrix@1{0\ar[r]&A\ar[r]^f&B\ar[r]^g&C\ar[r]&0}$ \end{center} Show that the following two conditions are equivalent: \begin{itemize} \item[i)] There is an $R-$module homomorphism $k:B\longrightarrow A$ such that $kf=1_A$. \item[ii)] There is an $R-$module homomorphism $h:C\longrightarrow B$ such that $gh=1_C$. \end{itemize} \centerline{} \noindent 3. (5 pt) Show that the $R-$module $P$ is projective if and only every short exact sequence of the form \begin{center} $\xymatrix@1{0\ar[r]&A\ar[r]^f&B\ar[r]^g&P\ar[r]&0}$ \end{center} \noindent is split exact. \end{document}