MATH 421-621 FALL 2013 HOMEWORK 6

Due Wednesday, February 27, 2013.

- 1. We say that the $n \times n$ matrix A is nilpotent if $A^m = 0$ for some positive integer m.
 - a) (5 pt) Show that every eigenvalue of a nilpotent matrix is 0.
 - b) (5 pt) Show that if A is nilpotent and $n \times n$, then $A^n = 0$.
- 2. Recall that A and B are similar $n \times n$ if there is a nonsingular $n \times n$ (say P) such that $B = P^{-1}AP$.
 - a) (5 pt) Show that det(A) = det(B).
 - b) (5 pt) Show that if (λ, v) is an eigenvalue/eigenvector pair for the matrix A then λ is an eigenvalue for B (corresponding to what eigenvector of B?).

3. (5 pt) Show that the $n \times n$ matrix A is similar to a diagonal matrix if and only if A has n linearly independent eigenvectors.

4. (5 pt) Let V be an n-dimensional vector space over \mathbb{F} and $\phi: V \longrightarrow V$ a fixed linear transformation. Show that V is a $\mathbb{F}[x]$ -module with action defined by

$$f(x) \cdot v = f(\phi)(v)$$

where $f(x) \in \mathbb{F}[x]$ and $v \in V$.