MATH 421-621
 FALL 2013 HOMEWORK 6

Due Wednesday, February 27, 2013.

1. We say that the $n \times n$ matrix A is nilpotent if $A^{m}=0$ for some positive integer m.
a) (5 pt) Show that every eigenvalue of a nilpotent matrix is 0 .
b) $(5 \mathrm{pt})$ Show that if A is nilpotent and $n \times n$, then $A^{n}=0$.
2. Recall that A and B are similar $n \times n$ if there is a nonsingular $n \times n$ (say P) such that $B=P^{-1} A P$.
a) $(5 \mathrm{pt})$ Show that $\operatorname{det}(A)=\operatorname{det}(B)$.
b) (5 pt) Show that if (λ, v) is an eigenvalue/eigenvector pair for the matrix A then λ is an eigenvalue for B (corresponding to what eigenvector of B ?).
3. (5 pt) Show that the $n \times n$ matrix A is similar to a diagonal matrix if and only if A has n linearly independent eigenvectors.
4. (5 pt) Let V be an n-dimensional vector space over \mathbb{F} and $\phi: V \longrightarrow V$ a fixed linear transformation. Show that V is a $\mathbb{F}[x]$-module with action defined by

$$
f(x) \cdot v=f(\phi)(v)
$$

where $f(x) \in \mathbb{F}[x]$ and $v \in V$.

