\documentclass[12pt]{amsart} \usepackage{graphicx} \usepackage[all]{xy} \usepackage{amssymb} \usepackage{amsmath} \voffset=-1in \hoffset=-1in \textheight=10in \textwidth=7in \begin{document} \author{} \title{Math 421-621\\Fall 2013\\Homework 6} \date{} \maketitle \thispagestyle{empty} \pagestyle{empty} \centerline{\it Due Wednesday, February 27, 2013.} \centerline{} \noindent 1. We say that the $n\times n$ matrix $A$ is nilpotent if $A^m=0$ for some positive integer $m$. \begin{itemize} \item[a)] (5 pt) Show that every eigenvalue of a nilpotent matrix is $0$. \item[b)] (5 pt) Show that if $A$ is nilpotent and $n\times n$, then $A^n=0$. \end{itemize} \centerline{} \noindent 2. Recall that $A$ and $B$ are similar $n\times n$ if there is a nonsingular $n\times n$ (say $P$) such that $B=P^{-1}AP$. \begin{itemize} \item[a)] (5 pt) Show that $\text{det}(A)=\text{det}(B)$. \item[b)] (5 pt) Show that if $(\lambda, v)$ is an eigenvalue/eigenvector pair for the matrix $A$ then $\lambda$ is an eigenvalue for $B$ (corresponding to what eigenvector of $B$?). \end{itemize} \centerline{} \noindent 3. (5 pt) Show that the $n\times n$ matrix $A$ is similar to a diagonal matrix if and only if $A$ has $n$ linearly independent eigenvectors. \centerline{} \noindent 4. (5 pt) Let $V$ be an $n-$dimensional vector space over $\mathbb{F}$ and $\phi:V\longrightarrow V$ a fixed linear transformation. Show that $V$ is a $\mathbb{F}[x]-$module with action defined by \[ f(x)\cdot v=f(\phi)(v) \] \noindent where $f(x)\in\mathbb{F}[x]$ and $v\in V$. \end{document}