\documentclass[12pt]{amsart} \usepackage{amssymb} \usepackage{amsmath} \usepackage{amsthm} \usepackage[all]{xy} \voffset=-1in \hoffset=-1in \textheight=10in \textwidth=6in \begin{document} \author{} \title{Math 421-621\\Spring 2013\\Homework 7} \date{} \maketitle \thispagestyle{empty} \pagestyle{empty} \centerline{\it Due Wednesday April 3, 2013.} \centerline{} \noindent 1. Find the canonical forms (the rational canonical form, primary rational canonical form and Jordan canonical form if possible) for the following matrices over $\mathbb{Q}$: \begin{itemize} \item[a)] (15 pt) $\left[ \begin {array}{cccc} -1&\ \ 2&-1&\ \ 0\\ -2&\ \ 3&-1&\ \ 0\\ \ \ 1&-1&\ \ 2&\ \ 0\\ -1&\ \ 1&\ \ 0&\ \ 1 \end {array} \right]$ \item[b)] (15 pt) $\left[ \begin {array}{ccccc} \ \ 3&\ \ 1&\ \ 0&\ \ 1&\ \ 1\\ \ \ 0&\ \ 3&\ \ 0&-1&\ \ 0\\ \ \ 0&-2&\ \ 4&\ \ 2&\ \ 0\\ \ \ 0&-1&\ \ 0&\ \ 3&\ \ 0\\ \ \ 1&-1&\ \ 0&-1&\ \ 3 \end {array} \right]$ \end{itemize} \centerline{} \noindent 3. A matrix $A$ is said to be nilpotent if there is an $m\geq 1$ such that $A^m=0$. Additionally, we define the trace of $A$ ($\text{tr}(A)$) to be the sum of the diagonal elements of $A$. For this problem, you may assume that $A$ is an $n\times n$ matrix over a field $\mathbb{F}$. \begin{itemize} \item[a)] (5 pt) Show that $\text{tr}(AB)=\text{tr}(BA)$. \item[b)] (5 pt) Show that if $P$ is an invertible $n\times n$ matrix then $\text{tr}(P^{-1}AP)=\text{tr}(A)$. \item[c)] (5 pt) Show that $A$ is nilpotent if and only if all of its eigenvalues are $0$. \item[d)] (5 pt) Show that if $A$ is nilpotent, then $\text{tr}(A)=0$. \item[e)] (5 pt) Determine the status of the converse of the statement in part d). \end{itemize} \end{document}