MATH 421-621 SPRING 2013 HOMEWORK 8

Due Wednesday April 10, 2013.

1. Let R be a commutative ring with identity. We say that the characteristic of R $(\operatorname{char}(R))$ is the smallest positive integer n such that nr = 0 for all $r \in R$. If no such positive n exists, we say that $\operatorname{char}(R) = 0$.

- a) (5 pt) Show that if \mathbb{F} is a field, then char(\mathbb{F}) is either 0 or a positive prime.
- b) (5 pt) Show that if \mathbb{F} is a field, then \mathbb{F} contains \mathbb{Q} or \mathbb{Z}_p for some positive prime p.
- c) (5 pt) Show that if \mathbb{F} is a field with finitely many elements, then $\operatorname{char}(\mathbb{F}) = p$ and $|\mathbb{F}| = p^m$ for some positive integer m.

2. Let R be an integral domain, \mathbb{F} be a field, and f(x) an irreducible polynomial in $\mathbb{F}[x]$.

- a) (5 pt) Show that if R is a PID, then every nonzero prime ideal of R is maximal.
- b) (5 pt) Show that $\mathbb{F}[x]$ is a PID.
- c) (5 pt) Show that $\mathbb{K} := \mathbb{F}[x]/(f(x))$ is a field containing (an isomorphic copy of) \mathbb{F} .
- d) (5 pt) Show that any element of $\mathbb K$ is a root of a polynomial with coefficients in $\mathbb F.$