\documentclass[12pt]{amsart} \usepackage{amssymb} \usepackage{amsmath} \usepackage{amsthm} \usepackage[all]{xy} \voffset=-1in \hoffset=-1in \textheight=10in \textwidth=6in \begin{document} \author{} \title{Math 421-621\\Spring 2013\\Homework 8} \date{} \maketitle \thispagestyle{empty} \pagestyle{empty} \centerline{\it Due Wednesday April 10, 2013.} \centerline{} \noindent 1. Let $R$ be a commutative ring with identity. We say that the characteristic of $R$ ($\text{char}(R)$) is the smallest positive integer $n$ such that $nr=0$ for all $r\in R$. If no such positive $n$ exists, we say that $\text{char}(R)=0$. \begin{itemize} \item[a)] (5 pt) Show that if $\mathbb{F}$ is a field, then $\text{char}(\mathbb{F})$ is either $0$ or a positive prime. \item[b)] (5 pt) Show that if $\mathbb{F}$ is a field, then $\mathbb{F}$ contains $\mathbb{Q}$ or $\mathbb{Z}_p$ for some positive prime $p$. \item[c)] (5 pt) Show that if $\mathbb{F}$ is a field with finitely many elements, then $\text{char}(\mathbb{F})=p$ and $\vert\mathbb{F}\vert=p^m$ for some positive integer $m$. \end{itemize} \centerline{} \noindent 2. Let $R$ be an integral domain, $\mathbb{F}$ be a field, and $f(x)$ an irreducible polynomial in $\mathbb{F}[x]$. \begin{itemize} \item[a)] (5 pt) Show that if $R$ is a PID, then every nonzero prime ideal of $R$ is maximal. \item[b)] (5 pt) Show that $\mathbb{F}[x]$ is a PID. \item[c)] (5 pt) Show that $\mathbb{K}:=\mathbb{F}[x]/(f(x))$ is a field containing (an isomorphic copy of) $\mathbb{F}$. \item[d)] (5 pt) Show that any element of $\mathbb{K}$ is a root of a polynomial with coefficients in $\mathbb{F}$. \end{itemize} \end{document}