MATH 421-621

SPRING 2013

HOMEWORK 9

Due Wednesday April 17, 2013.

1. (5 pt) Let $\mathbb{F} \subset \mathbb{K}$ be fields such that $[\mathbb{K}: \mathbb{F}]$ is prime. Show that if ξ is any element of \mathbb{K} that is not in \mathbb{F}, then $\mathbb{K}=\mathbb{F}(\xi)$.
2. We say that the extension of fields $\mathbb{F} \subset \mathbb{K}$ is quadratic if $[\mathbb{K}: \mathbb{F}]=2$.
a) (5 pt) Let $a, b, c \in \mathbb{F}$ with $a \neq 0$. Show that if $a x^{2}+b x+c$ is irreducible, then it has a solution in some quadratic extension in \mathbb{F}.
b) (5 pt) Derive the solution(s) of the equation $a x^{2}+b x+c=0$. You will need to make an assumtion, what is it?
c) (5 pt) Give an example of a field with infinitely many distinct quadratic extensions.
d) (5 pt) Give an example of a field with only one quadratic extension and an example of a field with no quadratic extensions.
e) (5 pt) Give an example of a field \mathbb{F} and an irreducible (over $\mathbb{F}[x]$) quadratic polynomial $a x^{2}+b x+c$ that has only one root in $\mathbb{K}:=\mathbb{F}[x] /\left(a x^{2}+b x+c\right)$.
3. Let F_{1} and F_{2} be fields both contained in a larger field L and both containing K. We define the composite of the fields F_{1} and $F_{2}\left(F_{1} F_{2}\right)$ to be the smallest subfield of L containing both F_{1} and F_{2}.
a) (5 pt) Show that $\left[F_{1} F_{2}: K\right] \leq\left[F_{1}: K\right]\left[F_{2}: K\right]$.
b) $(5 \mathrm{pt})$ Show that if $\operatorname{gcd}\left(\left[F_{1}: K\right],\left[F_{2}: K\right]\right)=1$ then $\left[F_{1} F_{2}: K\right]=\left[F_{1}: K\right]\left[F_{2}: K\right]$.
