MATH 421-621 SPRING 2013 EXAM 1

- 1. Give definitions/brief answers for the following.
 - a) (3 pt) Define the notion of an R-module.
 - b) (3 pt) What is an R-module homomorphism?
 - c) (3 pt) What does it mean for an R-module to be free?
 - d) (3 pt) What does it mean for an R-module to be projective?
 - e) (3 pt) What does it mean for a sequence of R-module homomorphisms to be exact?
 - f) (3 pt) What is a short exact sequence of R-module homomorphisms?
 - g) (3 pt) What does it mean for a short exact sequence of R-module homomorphisms to split?
 - h) (3 pt) If V is a vector space over \mathbb{F} , what is the definition of the dual vector space V^* ?
 - i) (3 pt) If V is a vector space over the field \mathbb{F} , give condition(s) which guararantee that $V \cong V^{**}$.

2. (5 pt) Let M be an R-module. Show that any element of the R-module $R \otimes_R M$ can be written as a *single* tensor of the form $1_R \otimes m$ with $m \in M$.

3. (5 pt) Compute the \mathbb{Z} -module $\mathbb{Q} \otimes_{\mathbb{Z}} A$, where A is an abelian group of order n.

4. (5 pt) Let $0 \longrightarrow V_1 \longrightarrow V_2 \longrightarrow V_3 \longrightarrow 0$, be a short exact sequence of vector spaces (over \mathbb{F}). Show this sequence splits.

- 5. Let P and Q be projective R-modules.
 - a) (5 pt) Show that $P \oplus Q$ is projective.
 - b) (5 pt) If $P \cong A \oplus B$ where A and B are R-modules, then show that A and B must be projective.