MATH 720
 FALL 2003
 HOMEWORK 1

Due Wednesday September 3, 2003.

1. (5 pt) Let \mathbb{Z} denote the integers and let $m, n \in \mathbb{Z}$ both be nonzero. A greatest common divisor for m and n is an integer d such that d divides both m and n and is "greatest" in the sense that if d^{\prime} divides both m and n, then d^{\prime} divides d. Show that m and n have a greatest common divisor and that this greatest common divisor is a linear combination of m and n (that is, if $d=\operatorname{gcd}(m, n)$ then there exist $a, b \in \mathbb{Z}$ such that $d=a m+b n)$.
2. Let G and H be groups, $f: G \longrightarrow H$ be a homomorphism, and $x, y \in G$. We will also use the notation $|x|$ to denote the order of the element $x \in G$.
a) (5 pt) Show that $|x|=\left|x^{-1}\right|=\left|y^{-1} x y\right|$.
b) (5 pt) Show that if $|x|$ is finite then $|f(x)|$ is finite and $|f(x)|$ divides $|x|$.
c) (5 pt) Show that $|x y|=|y x|$.
d) (5 pt) Show that if $x y=y x$ then $|x y| \leq \operatorname{lcm}(|x|,|y|)$.
e) (5 pt) Does part d) hold in general? Prove that it does or give a counterexample.
3. (5 pt) Suppose that G is a finite group generated by two elements of order 2. Show that G is necessarily D_{n} for some $n \geq 2$.
4. (5 pt) Let $x \in S_{n}, n \geq 2$. Show that $|x| \leq e^{\frac{n}{e}}$. (It should be noted that this is a very naive upper bound. Hint: calculus, LaGrange Multipliers and problem 1d) might be helpful.)
5. (5 pt) Let $m \geq 2$. Show that $D_{m}=S_{n}$ if and only if $n=m=3$. (Hint: problem number 4 might be useful.)
