MATH 720
 FALL 2010
 HOMEWORK 1

Due Friday September 3, 2010.

1. Let $k, m, n \in \mathbb{Z}$ be nonzero integers.
a) (5 pt) Show that $\operatorname{gcd}(m, n)$ is a linear combination of m and n (that is, show that there are integers a and b such that $a m+b n=\operatorname{gcd}(m, n))$.
b) $(5 \mathrm{pt})$ Show that if $\operatorname{gcd}(k, m)=1$ and $\operatorname{gcd}(k, n)=1$, then $\operatorname{gcd}(k, m n)=1$.
c) (5 pt) Show that if $\operatorname{gcd}(k, m)=1$ and k divides $m n$, then k divides n.
2. (2 is, in fact, odd) Let G be a group.
a) (5 pt) Show that any group of exponent 2 is abelian.
b) (5 pt) Show that if G is finite and generated by two elements of order 2 , then $G \cong D_{n}$ for some n.
3. (5 pt) Let S be a semigroup. Show that S is a group if and only if S has a left identity and every element of S has a left inverse.
4. (5 pt) Show that the group G is abelian if and only if the function $\phi: G \longrightarrow G$ given by $\phi(x)=x^{-1}$ is an automorphism.
5. (5 pt) Let G be a group and $\operatorname{Aut}(G)=\{\phi: G \longrightarrow G \mid \phi$ is an automorphism $\}$. If $x \in G$, we define the function $\phi_{x}: G \longrightarrow G$ by $\phi_{x}(y)=x^{-1} y x$ for all $y \in G$, and we define $\operatorname{Inn}(G)=\left\{\phi_{x} \mid x \in G\right\}$. Show that $\operatorname{Aut}(G)$ is a group with subgroup $\operatorname{Inn}(G)$.
