MATH 720 FALL 2010 HOMEWORK 2

Due Friday September 17, 2010.

1. (5 pt) Let H and K be subgroups of G. Show that HK = KH if and only if HK is a subgroup of G.

2. (5 pt) Let G be a finite group and H a normal subgroup of G such that |H| = k is relatively prime to [G:H]. Show that H is the only subgroup of order k.

3. (5 pt) Show that if G is finite and H and K are subgroups such that gcd([G : H], [G : K]) = 1 then G = HK.

- 4. A subgroup $H \leq G$ is said to be *characteristic* if $\sigma(H) \subseteq H$ for all $\sigma \in Aut(G)$.
 - a) (5 pt) Show that any characteristic subgroup of G is normal in G.
 - b) (5 pt) Show that G', the commutator subgroup, is characteristic in G (and hence normal).
 - c) (5 pt) Show that if $\phi: G \longrightarrow A$ is a homomorphism of groups, with A abelian, the ker(ϕ) contains the commutator subgroup G'.

5. (5 pt) Let G be a finite group of order n and let p be the smallest prime dividing n. Show that if there is a subgroup $H \leq G$ such that [G:H] = p, then H is normal in G.