MATH 720 FALL 2003 HOMEWORK 3

Due Monday September 29, 2003.

1. (5 pt)Suppose that G and H are groups and $f: G \longrightarrow H$ and $g: H \longrightarrow G$ are 1-1 group homomorphisms. Does is follow that $G \cong H$? Prove or give a counterexample.

2. We define the following generalizations of S_n , namely $S_{\infty} = \{f : \mathbb{N} \longrightarrow \mathbb{N} | f \text{ is bijective}\}$ and $\overline{S} = \bigcup_{n=1}^{\infty} S_n$.

- a) (5 pt) Show that both S_{∞} and \overline{S} are groups.
- b) (5 pt) Show that $\overline{S} \subseteq S_{\infty}$.
- c) (5 pt) Show that \overline{S} and S_{∞} are not isomorphic.

3. Show that S_n can be generated by the following sets of elements:

- a) (5 pt) $\{(1 \ 2), (1 \ 2 \cdots n)\}.$
- b) (5 pt) $\{(1 \ 2), (1 \ 3), \cdots, (1 \ n)\}.$
- c) (5 pt) { $(1 2), (2 3), \dots, (n-1 n)$ }.

4. (5 pt) Let D_n be the dihedral group on the *n*-gon. Compute $Z(D_n)$ and find all normal subgroups of D_n .

5. For this problem we consider the alternating and symmetric groups.

- a) (5 pt) Show that A_n is the unique subgroup of S_n of index 2.
- b) (5 pt) Show that the only nontrivial normal subgroup of S_n $(n \neq 4)$ is A_n .

6. (5 pt) Prove that neither S_n nor Q_8 can be decomposed into a direct product of proper subgroups.