MATH 720
 FALL 2010
 HOMEWORK 3

Due Friday October 1, 2010.

1. (5 pt) Give an example to show that the notions of direct product and direct sum are distinct (that is, give a family of groups such that $\oplus G_{i} \nsupseteq \prod G_{i}$).
2. (5 pt) Suppose that G and H are groups and $\phi: G \longrightarrow H$ and $\psi: H \longrightarrow G$ are both injective homomorphisms. Does this imply that $G \cong H$?
3. We define the following generalizations of S_{n}. Let $S_{\infty}=\{f: \mathbb{N} \longrightarrow \mathbb{N} \mid f$ is bijective $\}$ and $\bar{S}=\bigcup_{n=1}^{\infty} S_{n}$.
a) (5 pt) Show that S_{∞} is a group with subgroup \bar{S}.
b) (5 pt) Show that S_{∞} and \bar{S} are not isomorphic.
4. (5 pt) Show that S_{n} can be generated by the following sets.
a) $(5 \mathrm{pt})\{(12),(12 \cdots n)\}$.
b) $(5 \mathrm{pt})\{(12),(13), \cdots,(1 n)\}$.
5. For this problem, we consider the groups $A_{n} \unlhd S_{n}$.
a) (5 pt) Show that A_{n} is the unique subgroup of S_{n} of index 2 .
b) (5 pt) Show that for all $n \neq 4, A_{n}$ is the unique normal subgroup of S_{n}.
