\documentclass[12pt]{amsart} \usepackage{amssymb} \usepackage{amsmath} \usepackage{amsthm} \usepackage[all]{xy} \voffset=-1in \hoffset=-1in \textheight=10in \textwidth=6in \begin{document} \author{} \title{Math 720\\Fall 2010\\Homework 3} \date{} \maketitle \thispagestyle{empty} \pagestyle{empty} \centerline{\it Due Friday October 1, 2010.} \centerline{} \noindent 1. (5 pt) Give an example to show that the notions of direct product and direct sum are distinct (that is, give a family of groups such that $\oplus G_i\ncong\prod G_i$). \centerline{} \noindent 2. (5 pt) Suppose that $G$ and $H$ are groups and $\phi:G\longrightarrow H$ and $\psi:H\longrightarrow G$ are both injective homomorphisms. Does this imply that $G\cong H$? \centerline{} \noindent 3. We define the following generalizations of $S_n$. Let $S_{\infty}=\{f:\mathbb{N}\longrightarrow\mathbb{N}\vert f\text{ is bijective}\}$ and $\overline{S}=\bigcup_{n=1}^\infty S_n$. \begin{itemize} \item[a)] (5 pt) Show that $S_{\infty}$ is a group with subgroup $\overline{S}$. \item[b)] (5 pt) Show that $S_{\infty}$ and $\overline{S}$ are not isomorphic. \end{itemize} \centerline{} \noindent 4. (5 pt) Show that $S_n$ can be generated by the following sets. \begin{itemize} \item[a)] (5 pt) $\{(1\ 2), (1\ 2\cdots n)\}$. \item[b)] (5 pt) $\{(1\ 2), (1\ 3),\cdots, (1\ n)\}$. \end{itemize} \centerline{} \noindent 5. For this problem, we consider the groups $A_n\trianglelefteq S_n$. \begin{itemize} \item[a)] (5 pt) Show that $A_n$ is the unique subgroup of $S_n$ of index 2. \item[b)] (5 pt) Show that for all $n\neq 4$, $A_n$ is the unique normal subgroup of $S_n$. \end{itemize} \end{document}