MATH 720
 FALL 2010
 HOMEWORK 5

Due Friday, October 29, 2010.
This assignment will be devoted to showing that the only nonabelian simple group of order less than or equal to 100 is A_{5}.

1. Suppose that $|G|=60$ and that G is simple.
a) (5 pt) Find the possibilities for the number of Sylow 2-subgroups (n) of G and show that we only need concern ourselves with $n=5$ or $n=15$.
b) (5 pt) Show that if $n=5$ then G is isomorphic to a subgroup of S_{5} and conclude that $G \cong A_{5}$.
c) (5 pt) Show that if $n=15$ then there are two Sylow 2 -subgroups (say P and $Q)$ that must intersect in a subgroup of G of order 2 .
d) (5 pt) If $H=N_{G}(P \bigcap Q)$ show that $4||H|$ and conclude that $| H \mid \geq 12$. (Hint: any group of order 4 is abelian so $P \subseteq N_{G}(P \bigcap Q)$.)
e) (5 pt) Show that since the index of H in G less than or equal to $5, G \cong A_{5}$.
2. Assume that $|G| \leq 100$ and that G is simple and nonabelian.
a) (5 pt) Use the results from this (and previous assignments) to make a list of the possible orders of G.
b) (5 pt) Eliminate all possibilities except for $|G|=60$ or 90 (most of these should be almost immediate).
3. Now assume that $|G|=90$ and is simple.
a) (5 pt) Show that G must have 6 Sylow 5 -subgroups.
b) (5 pt) Show that G is necessarily isomorphic to a subgroup of A_{6}. (Hint: G can be considered a simple subgroup of S_{6}; consider $G \bigcap A_{6}$).
c) (5 pt) Derive a contradiction by showing that A_{6} has no subgroup of order 90 . (Hint: if A_{6} has a subgroup of order 90 , look at the orbit of this group under conjugation action...what is the order of its normalizer?)
4. (5 pt) Conclude that if $|G| \leq 100$ and G is nonabelian and simple, then $G \cong A_{5}$.
