MATH 720 FALL 2010 HOMEWORK 5

Due Friday, October 29, 2010.

This assignment will be devoted to showing that the only nonabelian simple group of order less than or equal to 100 is A_5 .

- 1. Suppose that |G| = 60 and that G is simple.
 - a) (5 pt) Find the possibilities for the number of Sylow 2-subgroups (n) of G and show that we only need concern ourselves with n = 5 or n = 15.
 - b) (5 pt) Show that if n = 5 then G is isomorphic to a subgroup of S_5 and conclude that $G \cong A_5$.
 - c) (5 pt) Show that if n = 15 then there are two Sylow 2-subgroups (say P and Q) that must intersect in a subgroup of G of order 2.
 - d) (5 pt) If $H = N_G(P \cap Q)$ show that 4||H| and conclude that $|H| \ge 12$. (Hint: any group of order 4 is abelian so $P \subseteq N_G(P \cap Q)$.)
 - e) (5 pt) Show that since the index of H in G less than or equal to 5, $G \cong A_5$.
- 2. Assume that $|G| \leq 100$ and that G is simple and nonabelian.
 - a) (5 pt) Use the results from this (and previous assignments) to make a list of the possible orders of G.
 - b) (5 pt) Eliminate all possibilities except for |G| = 60 or 90 (most of these should be almost immediate).
- 3. Now assume that |G| = 90 and is simple.
 - a) (5 pt) Show that G must have 6 Sylow 5-subgroups.
 - b) (5 pt) Show that G is necessarily isomorphic to a subgroup of A_6 . (Hint: G can be considered a simple subgroup of S_6 ; consider $G \cap A_6$).
 - c) (5 pt) Derive a contradiction by showing that A_6 has no subgroup of order 90. (Hint: if A_6 has a subgroup of order 90, look at the orbit of this group under conjugation action...what is the order of its normalizer?)
- 4. (5 pt) Conclude that if $|G| \leq 100$ and G is nonabelian and simple, then $G \cong A_5$.