MATH 720
 FALL 2010
 HOMEWORK 6

Due Friday, November 12, 2010.

1. (5 pt) Let R be a finite ring. Show that if R has an element that is not a zero divisor, then R has an identity. Conclude that if R is any finite ring, then every element of R is either a zero divisor or a unit.
2. (5 pt) We say that a Boolean ring is a ring such that $x^{2}=x$ for all $x \in R$. Show that a Boolean ring is commutative and of characteristic 2.
3. (5 pt) Show that if R is commutative, then the set of nilpotent elements is an ideal (and show that this is not true in the noncommutative case).
4. Let R be a nonzero ring such that for all $0 \neq a \in R$, there is a unique $b \in R$ such that $a b a=a$.
a) (5 pt) Show that R has no nontrivial zero divisors.
b) (5 pt) With the notation as above, show that $b a b=b$.
c) (5 pt) Show that R has an identity.
d) (5 pt) Show that R is a division ring.
5. (5 pt) Suppose R is commutative of prime characteristic $p>0$. Show that the function

$$
\phi_{n}: R \longrightarrow R
$$

given by $\phi_{n}(x)=x^{p^{n}}$ is a ring homomorphism.

