MATH 720 FALL 2003 HOMEWORK 7

Due Monday, November 17, 2003.

1. Let R be commutative with identity and $I\subseteq R$ an ideal. We define the radical of I to be

$$\operatorname{rad}(I) = \sqrt{I} = \{x \in R | x^n \in I \text{ for some } n\}.$$

Additionally, we say that I is radical if $I = \sqrt{I}$.

- a) (5 pt) Show that \sqrt{I} is an ideal of R containing I.
- b) (5 pt) Show that an arbitrary intersection of prime ideals is radical.

2. Let R be commutative with identity. We say that R is zero-dimensional if every prime ideal of R is maximal.

- a) (5 pt) Show that any zero-dimensional domain is a field.
- b) (5 pt) Show that if R is finite, then R is zero-dimensional.
- c) (5 pt) Give an example of a zero-dimensional ring that is neither finite nor a field.

3. (5 pt) Let D be a division ring. Show that in $M_n(D)$ (n by n matricies over D), (0) is a maximal ideal.

4. An element $e \in R$ is said to be *idempotent* if $e^2 = e$. Suppose that e is an idempotent element that is contained in Z(R).

- a) (5 pt) Show that 1 e is a central idempotent (if there is an identity in R).
- b) (5 pt) Show that eR and (1-e)R are ideals of R such that $R \cong eR \times (1-e)R$.
- c) (5 pt) If R has a central idempotent, does it follow that R has an identity?

5. (5 pt) Find all prime and maximal ideals in the ring \mathbb{Z}_k , $k \geq 0$. Find all idempotents in the ring \mathbb{Z}_{pq} where p and q are nonzero prime integers.

6. (5 pt) Consider the ring $\prod_{i=1}^{\infty} \mathbb{Z}_2$. Show that the ideals $I_n = \{\alpha = (a_1, a_2, \dots) \in \prod_{i=1}^{\infty} \mathbb{Z}_2 | a_n = 0\}$ are all maximal ideals. Are these the only maximal ideals?

7. (5 pt) Show that \mathbb{Z}_k is a principal ideal ring.