MATH 720
 FALL 2003
 HOMEWORK 7

Due Monday, November 17, 2003.

1. Let R be commutative with identity and $I \subseteq R$ an ideal. We define the radical of I to be

$$
\operatorname{rad}(I)=\sqrt{I}=\left\{x \in R \mid x^{n} \in I \text { for some } n\right\} .
$$

Additionally, we say that I is radical if $I=\sqrt{I}$.
a) (5 pt) Show that \sqrt{I} is an ideal of R containing I.
b) (5 pt) Show that an arbitrary intersection of prime ideals is radical.
2. Let R be commutative with identity. We say that R is zero-dimensional if every prime ideal of R is maximal.
a) (5 pt) Show that any zero-dimensional domain is a field.
b) (5 pt) Show that if R is finite, then R is zero-dimensional.
c) (5 pt) Give an example of a zero-dimensional ring that is neither finite nor a field.
3. (5 pt) Let D be a division ring. Show that in $\mathrm{M}_{n}(D)$ (n by n matricies over D), (0) is a maximal ideal.
4. An element $e \in R$ is said to be idempotent if $e^{2}=e$. Suppose that e is an idempotent element that is contained in $Z(R)$.
a) (5 pt) Show that $1-e$ is a central idempotent (if there is an identity in R).
b) (5 pt) Show that $e R$ and $(1-e) R$ are ideals of R such that $R \cong e R \times(1-e) R$.
c) (5 pt) If R has a central idempotent, does it follow that R has an identity?
5. (5 pt) Find all prime and maximal ideals in the ring $\mathbb{Z}_{k}, k \geq 0$. Find all idempotents in the ring $\mathbb{Z}_{p q}$ where p and q are nonzero prime integers.
6. (5 pt) Consider the ring $\prod_{i=1}^{\infty} \mathbb{Z}_{2}$. Show that the ideals $I_{n}=\left\{\alpha=\left(a_{1}, a_{2}, \cdots\right) \in\right.$ $\left.\prod_{i=1}^{\infty} \mathbb{Z}_{2} \mid a_{n}=0\right\}$ are all maximal ideals. Are these the only maximal ideals?
7. (5 pt) Show that \mathbb{Z}_{k} is a principal ideal ring.

