MATH 720
 FALL 2010
 HOMEWORK 8

Due Friday, December 10, 2010.

1. Let d be a square free integer. We define a quadratic ring of integers to be $R:=\mathbb{Z}[\omega]=\{a+b \omega \mid a, b \in \mathbb{Z}\}$ where

$$
\omega= \begin{cases}\sqrt{d} & \text { if } d \equiv 2,3 \bmod (4) \\ \frac{1+\sqrt{d}}{2} & \text { if } d \equiv 1 \bmod (4)\end{cases}
$$

We define the norm map $N: R \longrightarrow \mathbb{Z}$ by $N(a+b \omega)=(a+b \omega)(a+b \bar{\omega})$ where

$$
\bar{\omega}= \begin{cases}-\sqrt{d} & \text { if } d \equiv 2,3 \bmod (4) \\ \frac{1-\sqrt{d}}{2} & \text { if } d \equiv 1 \bmod (4)\end{cases}
$$

Prove the following properties of the norm.
a) (5 pt) $N(x y)=N(x) N(y)$ for all $x, y \in R$.
b) (5 pt$) N(x)=0$ if and only if $x=0$.
c) (5 pt) $x \in U(R)$ if and only if $N(x)= \pm 1$.
d) (5 pt) Use the norm map to show that $\mathbb{Z}[\sqrt{-14}]$ is not an HFD.
e) (5 pt) Use the norm map to show that the ring $\mathbb{Z}[\sqrt{10}]$ is not a UFD.
2. (5 pt) Let R be commutative with identity. We say that R is Von Neumann regular if for all $a \in R$ there is an $x \in R$ such that $a^{2} x=a$. Let R be Von Neumann regular and let \mathfrak{P} be a prime ideal of R. Show that $R / \mathfrak{P} \cong R_{\mathfrak{P}}$.
3. (5 pt) Show that any overring of the integers \mathbb{Z} is of the form \mathbb{Z}_{S} for some multiplicatively closed subset of \mathbb{Z}. (Note: an overring of a domain D, with quotient field K, is a ring R such that $D \subseteq R \subseteq K$.)
4. (5 pt) Let R be commutative with identity. Show that the following conditions are equivalent.
a) R has a unique prime ideal.
b) Every nonunit of R is nilpotent.
c) R has a minimal prime ideal which contains all zero divisors and all nonunits of R are zero-divisors.

