\documentclass[12pt]{amsart} \usepackage{amssymb} \usepackage{amsmath} \voffset=-1in \hoffset=-1in \textheight=10in \textwidth=6in \begin{document} \author{} \title{Math 720\\Fall 2010\\Homework 8} \date{} \maketitle \thispagestyle{empty} \pagestyle{empty} \centerline{\it Due Friday, December 10, 2010.} \centerline{} \noindent 1. Let $d$ be a square free integer. We define a quadratic ring of integers to be $R:=\mathbb{Z}[\omega]=\{a+b\omega\vert a,b\in\mathbb{Z}\}$ where \[ \omega= \begin{cases} \sqrt{d} &\text{ if $d\equiv 2,3\text{mod}(4)$}\\ \frac{1+\sqrt{d}}{2} &\text{ if $d\equiv 1\text{mod}(4)$}. \end{cases} \] We define the norm map $N:R\longrightarrow\mathbb{Z}$ by $N(a+b\omega)=(a+b\omega)(a+b\overline{\omega})$ where \[ \overline{\omega}= \begin{cases} -\sqrt{d} &\text{ if $d\equiv 2,3\text{mod}(4)$}\\ \frac{1-\sqrt{d}}{2} &\text{ if $d\equiv 1\text{mod}(4)$}. \end{cases} \] \noindent Prove the following properties of the norm. \begin{itemize} \item[a)] (5 pt) $N(xy)=N(x)N(y)$ for all $x,y\in R$. \item[b)] (5 pt) $N(x)=0$ if and only if $x=0$. \item[c)] (5 pt) $x\in U(R)$ if and only if $N(x)=\pm 1$. \item[d)] (5 pt) Use the norm map to show that $\mathbb{Z}[\sqrt{-14}]$ is not an HFD. \item[e)] (5 pt) Use the norm map to show that the ring $\mathbb{Z}[\sqrt{10}]$ is not a UFD. \end{itemize} \centerline{} \noindent 2. (5 pt) Let $R$ be commutative with identity. We say that $R$ is Von Neumann regular if for all $a\in R$ there is an $x\in R$ such that $a^2x=a$. Let $R$ be Von Neumann regular and let $\mathfrak{P}$ be a prime ideal of $R$. Show that $R/\mathfrak{P}\cong R_{\mathfrak{P}}$. \centerline{} \noindent 3. (5 pt) Show that any overring of the integers $\mathbb{Z}$ is of the form $\mathbb{Z}_S$ for some multiplicatively closed subset of $\mathbb{Z}$. (Note: an overring of a domain $D$, with quotient field $K$, is a ring $R$ such that $D\subseteq R\subseteq K$.) \centerline{} \noindent 4. (5 pt) Let $R$ be commutative with identity. Show that the following conditions are equivalent. \begin{itemize} \item[a)] $R$ has a unique prime ideal. \item[b)] Every nonunit of $R$ is nilpotent. \item[c)] $R$ has a minimal prime ideal which contains all zero divisors and all nonunits of $R$ are zero-divisors. \end{itemize} \centerline{} \end{document}